Original Article
Sum (2,M)-double fuzzifying continuity and characterizations of (2,M)-double fuzzifying topology
Author(s): Mohammed Khalaf*
(2,M)-double fuzzifying topology is a generalization of (2,M)- fuzzifying topology and classical topology. Motivated by the study of (2,M)- fuzzifying topology introduced by Höhle for fuzzifying topology. The main motivation behind this paper is introduce (2,M)-double fuzzifying topology as tight definition and a generalization of (2,M)- fuzzifying topology. Also, study structural properties of (2,M)-double fuzzifying continuous mapping, (2,M)- double fuzzifying quotient mapping, (2,M)-double fuzzifying operator, (2;M)- double fuzzifying totally continuous mapping and define an (2,M)-double fuzzifying Interior (closure) operator. The respective examples of these notions are investigated and the related properties are discussed. On the other hand, a characterization of (2,M)-fuzzifying topology by (2,M)-fuzzifying neighborhood system, where M is a completely distributive, was give.. Read More»
DOI:
10.37532/2752-8081.18.2.6