RESEARCH

A proof of Collatz's Conjecture

Ramaswamy Krishnan	
Krishnan R. A proof of Collatz's Conjecture. J Pure Appl Maths. 2025; 8(6):1-3.ABSTRACTThe proof of Collatz Conjecture is divided in to three parts. In	numbers of the form $(4k+1)$. In the third part it is shown how numbers of the form $(4k+3)$ iterates in to numbers of the form (4k+1). Thus the Conjecture is proved for all odd 'n'. As even numbers iterate into Odd numbers, the Conjecture is proved for all positive integers.
the First part it is proved for the set of numbers {1, 5, 21, 85}.	Key Words: Collatz's Conjecture; Part; Positive; Number; Integers
In the second part, using the above it is proved for odd	
INTRODUCTION	
Consider the following equation for a positive integer 'n'.	Thus, a set $S_1 = \{1, 5, 21, 85, 341,,\}$, is generated.
f(n,1) = n / 2, if 'n' is even and = $(3n + 1)$ if 'n' is odd.	$S_1 = \{s_r: s_r = (4^r - 1)/3, \ge 1\}$
Let $f(n,r) = f[f(n,r-1), 1]$ for $n \ge 2$	This set is the 'PRIMARY SET', because every other number iterates into a member of this set greater than '1' before iterating into '1'. Part 2: An analysis of n = 4k+1
Now consider the set	As only odd value of 'n' is analysed it can be divided into two forms,
A (n) = { f (n,1), f (n,r),}	that is, $n=4k+1$ and $n=4k+3$. An analysis of $n=4k+3$ is dealt in part 3. But, part 2 and part 3 are interconnected.
Consider an imaginary set	Consider, n=4k+1
$B(n) = \{ f(n,1), \dots, 1, 4, 2, 1, 4, 2, 1, -\}$	f(n, 1) = f[(4k+1), 1]
According to Collatz's Conjecture, both the sets are identical.	= 12k+6
That is $A(n)=B(n)$	f(n, 2) = 6k+3
Therefore, A(n)=B(n), means Collatz's Conjecture is true for 'n'. It is	f(n, 3) = 3k+1
obvious that Collatz's Conjecture has to be proved for odd value of 'n', as for even value, it will iterate in to an odd number and	If 'k' is odd, then $f(k) = 3k+1$.
ultimately ending in the odd number '1'.	Or if 'n' is an odd number and $A(n) = B(n)$,
Par 1: An analysis of numbers 1, 5, 21, 85 etc.	
Consider the number n= [$4^{r-1} + 4^{r-2} + 4^{r-3} + +1$]	Then, $A(4n+1) = B(4n+1)$.
$f(n,1) = (4 \cdot 1)[4^{r_1} + \dots + 1] + 1 = 4^r$	This is an important result and it can even derive the primary set.
Therefore, $f(n, 2r+1) = 1$.	$S_1 = \{1, 4 + 1, 5(4) + 1, 21(4) + 1, \}$
Hence A(n)=B(n).	$S_1 = \{1, 5, 21, \}$, similarly $S_3 = \{3, 13, 53, \}$

Correspondence: Ramaswamy Krishnan, Independent Researcher, India, E-mail: ramasa421@gmail.com

Received: 21 Oct, 2024, Manuscript No. puljpam-24-7379, Editor Assigned: 23 Oct, 2024, PreQC No. puljpam-24-7379 (PQ), Reviewed: 27 Oct, 2024, QC No. puljpam-24-7379 (Q), Revised: 31 Oct, 2024, Manuscript No. puljpam-24-7379 (R), Published: 30 Nov, 2024, DOI:-10.37532/2752-8081.24.8(6).01-03

Independent Researcher, India

ACCESS This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

Krishnan

 $S_7 = \{7, 29, 117, -- --\}$ $S_9 = \{9, 37, 149, -- --\} \text{ Or in general}$ $S_{2n+1} = \{2n + 1, 8n + 5, 32n + 21, -- -\}.$

These sets are important in the understanding of the problem. In these sets, except the first member, all the other members Are, obviously, of the (4k+1) form.

Consider the numbers below 21.

The proof for (3, 11, 19,--); (7, 23,--); (15,47-) etc are given in part-3. What is left out is '9 and 17' which are of the (8k+1) form, which iterate into (6k+1), which is of (4k+1) or (4k+3) form. Example is '9' and it is an interesting number, as it iterates into 7, 11, 17, 13, 5 and to '1'. If 'n' is odd and A(n) = B(n), then A(4n+1) = B(4n+1).

The converse is also true.

If 'n' is odd and A(4n+1) = B(4n+1), then A(n) B(n).

Now, assume that, for $n \le (4k + 1)$, A(n) = B(n)

Consider $n_1 = 4(k + r) + 1$.

If (k + r) is odd & $(k + r) \le (4k + 1)$, then $(k + r) = (k + r) \& so (n_1) = (n_1)$.

If (k + r) is even & $3(k + r) + 1 \le (4k + 1)$, then $A(n_1) = B(n_1)$. That is, if, $3r \le k$, $(n_1) = (n_1)$.

'k' is odd, 'r' is even & so 'k + r' is odd.

k = 1, therefore $(k + r) \le 5$

Hence, (k + r) = 3,5 and so, A(3) = B(3), A(13) = B(13).(5) = (5) and A(21) = B(21).

k=3, therefore $(k+r) \leq 13$.

Hence, (k + r) = 5, 7, 9, 11, 13.

k = 5, therefore $(k + r) \le 21$.

Hence, (k + r) = 7, 9, 11, 13, 15, 17, 19, 21 and so on.

'k' is even, 'r' is odd and so 'k + r' is odd.

k=2, therefore $(k+r) \leq 9$.

Hence, (k + r) = 3, 5, 7, 9.

k=4, therefore $(k+r) \leq 17$.

Hence, (*k* + *r*) =9, 11, 13, 15, 17.

k = 6, therefore $(k + r) \le 25$.

Hence, (k + r) = 17, 19, 21, 23, 25,. k = 8, therefore $(k + r) \le 33$.

2

Hence, (*k* + *r*) = 25, 27, 29, 31, 33 and so on.

These generates the set, $K_1 = \{1, 3, 5, 7, - - - - - -\}$

 $K_1 = \{ k: k=2s+1, s \in N \}$

'k' is odd, 'r' is odd and so 'k + r' is even

 $(n_1) = (n_1), if 3r \ge k.$

Hence, for, k=3,5,7; r=1 and (k+r)=4, 6, 8.

for, =9,11,13; r = 1,3 and (k + r) = 10, 12, 14, 16. And so on.

These generates the set

 $k_2 = \{2s \& s \in N\}$

(k = 0, 2 is include, as it can be verified).

The set, $K = K_1 \cup K_2 = \{K : K \in N\}$. This set' K' generates the set, $N(2^2) = \{1, 5, 9, 13, \dots\}$ $= \{n_2 : n_2 = (4k + 1), k \in N\}$ $A(n_2) = B(n_2)$.

It may be noted that in the set 'K1', A(K) = B(k). Therefore, the set 'K1' itself proves Collatz's Conjecture. But, however part 3 is important, as the necessary connectivity is provided by it.

Part 3: An analysis of n = (4k+3)

Though it is assumed, n = 4k+1, is solved, 4k+1 and 4k+3 are interconnected. It will be shown how (4k+3) becomes (4k+1) Before becoming '1'. Let, n = (4k + 3); 'k' can be odd and even. Let, $k = 2k_3$ or $2k_3 + 1$ Therefore, $n_3 = (8k_3 + 3) \text{ or } n_{31} = (8k_3 + 7)$. $n_3 = (8k_3 + 3)$ So, $f(n_3, 1) = f(2^3 k_3 + 2^2 - 1, 1) = 3 \cdot 2^3 k_3 + 2^3 + 2^2 - 3 + 1$ $f(n_3, 2) = 3.2^2 k_3 + 2^2 + 2 - 1 = 4(3k_3 + 1)4(3k_3 + 1) + 1$ Therefore, $A(n_3) = B(n_3)$ Thus, the following set is generated. Hence $N(2^3) = \{3, 11, 19, \dots\} = \{n_3 : n_2 = (2^3 k + 3), k^{3}0\}.$ n_{31} , can be odd or even Therefore let, $n_4 = 2^4 k_4 + 7 \& n_{41} = 2^4 k_4 + 15$ $n_4 = 2^4 k_4 + 2^3 - 1$ $f(n_4, 2) = 3.2^4 k_4 + 2^4 + 2^3 - 3 + 1 = 2^4 (3k_4 + 1) + 2^3 - 2$ $f(n_4, 2) = 2^3 (3k_4 + 1) + 3$ $f(n_4, 4) = 2^2 (3^2 k_4 + 3 + 1) + 1.$

Therefore, $A(n_4) = B(n_4)$

Thus the following set is generated N(2⁴) = {7,23,39,...} = { $n_4 : n_4 = (2^4k_4 + 7), k \ge 0.$ }

 ln, n_{41}, k_4 can be odd or even

Therefore let, $n_5 = 2^5 k_5 + 15 \& n_{51} = 2^5 k_5 + 31$ $n_5 = 2^5 k_5 + 2^4 - 1$ f $(n_5, 6) = 4 (3^3 k_5 + 3^2 + 3 + 1) + 1$ Therefore, $A(n_5) = B(n_5)$.

Thus, the following set is generated.
$$\begin{split} \mathrm{N}(2^5) &= \{15,47,79,\cdot\cdot\} = \{\,\mathbf{n}_5:\mathbf{n}_5=(\,2^5\,\mathbf{k}+15\,),\mathbf{k}\geq 0.\,\} \\ \mathrm{Let}, \mathbf{n}_r &= 2^rk_r + 2^{r-1} \cdot 1\,\,\&\,\mathbf{n}_{r1} = \,2^r\mathbf{k}_r + 2^r \, - 1. \\ (\,\mathbf{r} - 2\,): -\mathbf{n}_r &= 2^rk_r + 2^{r-l-1} \end{split}$$
 f (n_r, 2r - 4) = 4($3^{r-2}k_r + 3^{r-3} + 3^{r-4} + \dots + 1$) + 1 Therefore, A(n_r) = B(n_r).

Thus, the following set is generated. $N(2^{r}) = \{ (2^{r-1} - 1), --, (2^{r-1} - 1 + k2^{r}), -- \}.$ $N(2^{r}) = \{ n_{r} : n_{r} = (2^{r}k_{r} + 2^{r-1} - 1), k \ge 0. \}$

CONCLUSION

All these sets put together constitutes the master set N (2) $N(2) \equiv \{ N(2^2) \bigcup N(2^3) \bigcup \dots \bigcup N(2^r) \dots : r \rightarrow \infty \}.$ The Set, N(2) = {1,3,5,...} = { $n_2 : n_2 = (2k + 1), k \ge 0$ }

And $A(n_2) = B(n_2)$.

The above set are represents all odd numbers. All even numbers tends to an odd number.

Therefore, $A(n) = B(n) \& n \in N$

Thus, Collatz's Conjecture, is proved for all positive integers.