RESEARCH

A proof of Collatz's Conjecture

Independent Researcher, India

Correspondence: Ramaswamy Krishnan, Independent Researcher, India, E-mail: ramasa421@gmail.com

Received: 21 Oct, 2024, Manuscript No. puljpam-24-7379, Editor Assigned: 23 Oct, 2024, PreQC No. puljpam-24-7379 (PQ), Reviewed: 27 Oct, 2024, QC No. puljpam-24-7379 (Q), Revised: 31 Oct, 2024, Manuscript No. puljpam-24-7379 (R), Published: 30 Nov, 2024, DOI:-10.37532/2752- 8081.24.8(6).01-03

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

Krishnan

 $S_7 = \{7, 29, 117, - - - - -\}$ S_9 ={9,37,149, – – – – – -) Or in general S_{2n+1} ={2n + 1,8n+ 5,32n + 21,---}.

These sets are important in the understanding of the problem. In these sets, except the first member, all the other members Are, obviously, of the (4k+1) form.

Consider the numbers below 21.

The proof for $(3, 11, 19, ...)$; $(7, 23, ...)$; $(15,47)$ etc are given in part-3. What is left out is '9 and 17' which are of the (8k+1) form, which iterate into (6k+1), which is of $(4k+1)$ or $(4k+3)$ form. Example is '9' and it is an interesting number, as it iterates into 7, 11, 17, 13, 5 and to '1'. If 'n' is odd and $A(n) = B(n)$, then $A(4n+1) = B(4n+1)$.

The converse is also true.

If 'n' is odd and $A(4n+1) = B(4n+1)$, then $A(n) B(n)$.

Now, assume that, for $n \le (4k + 1)$, $A(n) = B(n)$

Consider $n_1 = 4(k + r) + 1$.

If $(k + r)$ is odd $\& (k + r) \leq (4k + 1)$, then $(k + r) = (k + r)$ & so $(n_1) = (n_1)$.

If $(k + r)$ is even & $3(k + r) + 1 \le (4k + 1)$, then $A(n_1) = B(n_1)$. That is, if, $3r \leq k$, $(n_1) = (n_1)$.

'k' is odd, 'r' is even & so 'k + r' is odd.

 $k = 1$, therefore $(k + r) \leq 5$

Hence, $(k + r) = 3,5$ and $so, A(3) = B(3), A(13) = B(13).$ $(5) = (5)$ and $A(21) = B(21)$.

 $k=3$, therefore $(k + r) \leq 13$.

Hence, $(k + r) = 5, 7, 9, 11, 13.$

 $k = 5$, therefore $(k + r) \leq 21$.

Hence, $(k + r) = 7,9,11,13,15,17,19,21$ and so on.

'k' is even, 'r' is odd and so 'k + r' is odd.

 $k=2$, therefore $(k + r) \leq 9$.

Hence, $(k + r) = 3, 5, 7, 9$.

 $k=4$, therefore $(k + r) \leq 17$.

Hence, $(k + r) = 9, 11, 13, 15, 17$.

 $k = 6$, therefore $(k + r) \leq 25$.

Hence, $(k + r) = 17,19,21,23,25,$. $k = 8$, therefore $(k + r) \leq 33$.

Hence, $(k + r)$ = 25, 27, 29, 31, 33 and so on.

These generates the set, $K_1=[1,3,5,7,$ -------

 $K_1=[k: k=2s+1, s \in N]$

'k' is odd, 'r' is odd and so 'k + r' is even

 $(n_1) = (n_1), if 3r \ge k.$

Hence, for, k=3,5, 7; $r = 1$ and $(k + r) = 4, 6, 8$.

for, =9,11,13; $r=1,3$ and $(k + r) = 10, 12, 14, 16$. And so on.

These generates the set

 $k_2 = \{2s \& s \in N\}$

 $(k = 0, 2$ is include, as it can be verified).

The set, $K = K_1 \cup K_2 = \{K : K \in \mathbb{N}\}.$ This set' K' generates the set, $N(2^{2}) = \{1, 5, 9, 13, \ldots \}$ $=\{n_2 : n_2 = (4k + 1), k \in N \}$ A (n_2) = B (n_2) .

It may be noted that in the set 'K1', $A(K) = B(k)$. Therefore, the set 'K1' itself proves Collatz's Conjecture. But, however part 3 is important, as the necessary connectivity is provided by it.

Part 3: An analysis of $n = (4k+3)$

Though it is assumed, $n = 4k+1$, is solved, $4k+1$ and $4k+3$ are interconnected. It will be shown how (4k+3) becomes (4k+1) Before becoming '1'. Let, $n = (4k + 3)$; 'k' can be odd and even. Let, $k = 2k_3$ or $2k_3 + 1$ Therefore, $n_3 = (8k_3 + 3)$ or $n_{31} = (8k_3 + 7)$. $n_3 = (8k_3 + 3)$ So, f $(n_3, 1)$ = f $(2^3 k_3 + 2^2 - 1, 1)$ = 3.2³ $k_3 + 2^3 + 2^2 - 3 + 1$ f (n₃, 2) = 3.2² k₃ + 2² + 2 - 1 = 4 (3k₃ + 1) 4 (3k₃ + 1) + 1 Therefore, $A(n_2) = B(n_2)$ Thus, the following set is generated. Hence $N(2^3) = \{3, 11, 19, \ldots\} = \{ n_3 : n_3 = (2^3 k + 3), k^3 0 \}.$ n_{31} , can be odd or even Therefore let, $n_4 = 2^4 k_4 + 7 \& n_{41} = 2^4 k_4 + 15$ $n_4 = 2^4 k_4 + 2^3 - 1$ $f(n_4, 2) = 3 \cdot 2^4 k_4 + 2^4 + 2^3 \cdot 3 + 1 = 2^4 (3k_4 + 1) + 2^3 \cdot 2$ $f(n_4, 2) = 2^3 (3k_4 + 1) + 3$ $f(n_4, 4) = 2^2 (3^2 k_4 + 3 + 1) + 1.$

Therefore, $A(n_4) = B(n_4)$

Thus the following set is generated $N(2^4) = \{ 7, 23, 39, \dots \} = \{ n_4 : n_4 = (2^4 k_4 + 7), k \ge 0. \}$

 $\ln n_{41}$, k_4 can be odd or even

Therefore let, $n_5 = 2^5 k_5 + 15 \& n_{51} = 2^5 k_5 + 31$ $n_5 = 2^5 k_5 + 2^4 -1$ f (n₅,6) = $4(3^3k_5 + 3^2 + 3 + 1) + 1$ Therefore, $A(n_5) = B(n_5)$.

Thus, the following set is generated. $N(2^5) = \{15, 47, 79, -\} = \{n_5 : n_5 = (2^5 k + 15), k \ge 0.\}$ Let, $n_r = 2^r k_r + 2^{r-1} - 1$ & $n_{r1} = 2^r k_r + 2^r - 1$. $(r - 2)$: $-n_r = 2^r k_r + 2^{r-1-1}$

 $f(n_r, 2r - 4) = 4(3^{r-2}k_r + 3^{r-3} + 3^{r-4} + \cdots + 1) + 1$ Therefore, $A(n_r) = B(n_r)$.

Thus, the following set is generated. $N(2^r) = \{ (2^{r-1} - 1), -1, (2^{r-1} - 1 + k2^r), -1 \}.$ $N(2^r) = \{ n_r : n_r = (2^r k_r + 2^{r-1} - 1), k \ge 0. \}$

CONCLUSION

```
All these sets put together constitutes the master set N (2) 
N(2) = \{ N(2^2) \cup N(2^3) \cup \cdots \cup N(2^r) \cdots r \rightarrow \infty \}.The Set, N(2) = \{1, 3, 5, \dots\} = \{n_2 : n_2 = (2k + 1), k \ge 0\}And A (n_2) = B(n_2).
```
The above set are represents all odd numbers. All even numbers tends to an odd number.

Therefore, $A(n) = B(n)$ & $n \in N$

Thus, Collatz's Conjecture, is proved for all positive integers.