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 RESEARCH ARTICLE 

Forecasting solar power output to assist with the integration of 

solar energy into the power grid 

Aarush Garg 

INTRODUCTION 

 ue to the emergence of rising global temperatures, and the dire 
consequences of global warming, it is of utmost importance to 

work on reducing greenhouse gas emissions. The largest source of 
these are fossil fuels, therefore it is important to find alternative 
energy sources, such as renewable energy sources to reduce the impact 
of global warming. Finding clean energy and integrating it into the 
energy grid is a huge step to- wards solving the UN sustainable 
development goal number 7, as shown in Figure 1. However, it has 
been challenging for scientists and policy-makers to harness these 
renewable energy sources, especially solar energy, to the fullest extent 
due to the unreliability of such energy sources. Therefore to aid with 
the integration of renewable energy to the energy grid, it is important 
to forecast the output of the energy sources. Since solar energy is the 
most prominent source of renewable energy, with long-lasting 

output ahead of time, to make it easier to integrate solar energy 
into the grid, and reduce the reliance on fossil fuels. 
PV cells convert light energy to electric energy using materials 
that show signs of photovoltaic effect. The main issue is that solar 
panels, which make up a PV system only work well if the sunlight is 
directly on to the panel, and energy is lost when tracking 
system is not established, hence building a PV forecasting 
system is of utmost importance. PV outputs vary throughout the 
day, given the varying solar irradiation and other weather 
temperatures, therefore, to integrate this resource into the 
energy grid, whilst maintaining consumer demands, forecasting of 
power output can help to estimate the amount of load that solar 
power can assist with. During times of high solar power production, 
batteries can be used to store the excess energy for times when the 
sun is not out (i.e during the night, or on a rainy day). 
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ABSTRACT 

This paper discusses the integration of solar energy into the 

power grid by forecasting solar power ahead of time using a time 

series forecasting problem formulation. The aim is to help reduce 

the impact of fossil fuels on the environment. The two main 

objectives are namely to forecast PV power one time step ahead 

and to forecast PV power multiple time steps ahead. Data has 

been taken from the Hong Kong University of Science and 

Technology. This paper compares machine learning techniques 

such as CNN LSTM, RNN LSTM, Dense Neural Network, 

Convolutional Neural Network, to find the best predictor of PV output.  

The tuning of hyper parameters such as the learning rate, regularization 

parameter, activation function, number of iterations, etc. is also an 

essential part of the discussion. The Long Short Term Memory (LSTM) 

and dense feed forward layers, as well as convolutional layers help to 

introduce new important features from the original features. This paper 

gives a summary of the future works to be done to assist for additional 

research and improved results. 

Keywords:  Solar power forecasting; Machine learning; Renewable energy; Neural 

networks; Autoregression; Power integration 



Garg

117 J Pure Appl Math Vol 7 No 2  March 2023

Figure 1) Sustainable Development Goal Number 7: Clean and Affordable 

Energy 

RELATED RESEARCH
Multiple techniques were used to predict solar power output 
one hour ahead given hourly data. In techniques such as Artificial 
Neural Networks (ANN), Convolutional Neural Networks (CNN), 
multiple linear regression and support vector machines were 
used for prediction [1]. In mathematical models such as 
ARIMA (auto regressive integrated moving average) as well as 
machine learning algorithms were used, due to their ability to 
factor in seasonality of winter vs summer and the time of day 
[2-3]. Other than the ones stated above, the most common 
techniques include Recurrent Neural Network (RNN), dense neural 
network and the combination of RNN and CNN with LSTM (long 
short term memory). From CNN LSTM worked best on the data 
provided, with a mean absolute error of 5% [3]. Other deep 
learning techniques, such as Auto-LSTM and MLP (multiple layer 
perceptron) have been used for forecasting solar PV output, as in 
[4]. 
For multiple timestep forecasting, techniques from, as well as 
the similar techniques from single timestep forecasting are very 
common. In particular, the hybrid Convolutional LSTM model is 
the most common, as the convolutional layer and LSTM layer 
work well together, giving good approximations [5].
In the forecasting of PV output, the most common weather 
features chosen are solar irradiance, temperature, humidity, visibility, 
pressure dew and windspeed, as can be seen in [6]. In particular 
the solar irradiance feature is of great importance, as shown in 
[7]. Another additional feature, as discussed in [8]. Which could be 
useful is the azimuth. This is because it indicates the elevation 
angle of the Sun above the solar panel system, and theoretically 
should contribute a weight to the PV solar output. 

OBJECTIVES 
This paper discusses 2 main objectives: 

• To predict PV output one timestep ahead

• To predict PV output multiple timesteps (14 hours)
ahead As discussed, these objectives are both of
importance to help with planning, and the
integration of renewable energy in the form of solar
energy into the power grid.

DATA COLLECTION 
There are many weather variables which may affect the solar power 
production of a certain hour. Some of these factors include solar 
irradiance, temperature, windspeed, humidity, time of day and time 
of year. The data from the past 2 years of hourly readings for these 
factors was collected from the Hong Kong University of Science and 
Technology (HKUST) Supersite, and PV data was collected from the 
HKUST Solar site. The site is located in the new territories region of 
Hong Kong, and collects data using various different types of sensors 
including pressure sensors, temperature sensors and anemometer to 
measure windspeed. 

NOTATIONS 
LSTM = Long Short Term Memory  
CNN = Convolutional Neural Network  
RNN = Recurrent Neural Network 
ARIMA = Auto-Regressive Integrated Moving Average  
PV = Photo-Voltaic 
ANN = Artificial Neural Network 
AR LSTM = Auto-Regressive Long Short Term Memor 
α = learning rate 
λ = regularization parameter 
tanh = Hypberbolic Tangent Activation Function  
relu = Rectified Linear Unit 
Adam = Adaptive Moment Optimizer  
Epochs = Number of Iterations 
ConvWindow = Convolutional Window Width  
MAE = Mean Absolute Error 
val = cross-validation set 
d = length of day in seconds  
t = timestamp in seconds 
x = data feature 
x = normalized feature

LIST OF FEATURES USED IN MODELLING 

• Windspeed
• Azimuth
• Solar Irradiance
• Pressure
• Visibility
• Humidity
• Temperature
• PV output
• Day sin
• Day cos

DATA PREPARATION 
In this section, the preparation stages of the data will be outlined 
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Removing anomalous data from weather set 

Before merging the data from weather features, it was essential to 
remove the anomalous data from the dataset. For example, the data 
for certain hours for temperature happened to be -99999 degrees 
celsius. This indicated that an error had occurred, and the sensor was 
unable to give a reading for that hour, and such anomalous data was 
removed from the dataset. After that, the data was merged into a 
dataframe as shown below, with the outputs of 2 year of weather data, 
collected hourly. 

Feature normalization 
For techniques involving machine learning, it is essential to do 
feature normalization, before running the model. This is because 
certain features may have different data ranges, and assigning weights 
to these features will be meaningless. In- stead, if all features are 
normalized, then the weights can be compared against each other, 
and thus the importance of each feature can be compared. This is 
highly important for analysis of models and methods to increase 
performance of the model, as the data can be easily understood. 
Below shows a snapshot of the first 10 rows of the normalized 
dataframe (Figure 2). 
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Figure 2) Dataset with PV and all weather features normalized 

Data transformation - day sin, day cos features 
As discussed, it is very important to detect the periodicity and pattern 
of data, and hence creating features to detect this is highly important 
[9]. One key step required was to create a feature which captures the 
time of day in a numerical method, and gives a repeating pattern of 
values for each new day. Hence, each date and time was give a 
timestamp and then multiplied by 2π and divided by the duration of 
each day. The cosine and sine of these values were taken, to form a 
periodic curve for every 24 hours. A similar process could be used to 
find the seasonality of the year, by replacing the length of day with 
length of year. 
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Training set - test set - validation set split 
In this data, the split of data has been done 75 % training, 15 % 
validation and 10 % test data. It is essential to ensure that the data is 
chosen in a time-series manner, such that the training set data has to 
be together, as the data being used is in chronological order (date and 
time wise). Hence, the algorithm being run is a time-series forecasting 
model. Due to the fact that this problem is a time-series formulation, 
the machine learning algorithm would not give proper weights if the 

order of the data were to be changed. Autoregression of the PV 
output would fail as the data would not be in a time- series order, if 
the data were split randomly. The weather and solar output of the 
previous timestep does impact the weather and solar output of the 
next timestep, due to the physical constraints on how quickly the 
weather can change. 

Cleaning the PV output data 
Data for the PV output for each day was available for every 5 minutes 
between 5:00 am to 8:00 pm. This is because at any time after 8:00 
pm and before 5:00 am, the sun was not out and therefore the PV 
output data was not collected during these times. Accurate data was 
collated into a dataframe, as shown below. 

Merging PV and weather data 
Merging the PV and weather data was tricky as the PV data had been 
collected every 5 minutes whereas the weather data had been 
collected hourly. Therefore, when merging the PV and weather data, 
the largest common subset of both sets of times had to be chosen 
along with the label data (PV output) and the input features (weather 
data). As shown below, a sample of the dataframe can be seen with all 
the PV and weather data together in Figure 3. 

Figure 3) Clean dataframe with PV output and weather features 

Violin plot 
After the normalization of data, a violin plot was created to show the 
distribution of data for each feature, and evaluate the split of data for 
the entire dataset. Figure 4 was used to check for large anomalies in 
the data, and if so, to under- stand the cause behind this anomalous 
data, and whether any modification would be required. 

Figure 4) Violin plot of different features 

METHODOLOGY 
Single step model 
The single step model involves taking inputs of a certain window 
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length, and producing a single output from these inputs. This is then 
compared against the actual output/label, and the MAE is found, 
which is fed back to the model. The figure below gives a visual 
representation of the single-step forecasting model (Figure 5). 

Figure 5) Single step forecasting model 

Multi step model 
The multi output model involves taking inputs of a certain window 
length, and producing a multiple timestep ahead output from these 
inputs. These outputs are compared against the actual outputs, and 
the MAE is found, which is fed back to the model. The figure below 
gives a visual rep- resentation of multi-step forecasting model (Figure 
6). 

Figure 6) Multi step forecasting model 

Performance metric
The metric being used is the Mean Absolute Error (MAE), as it is 
the most appropriate metric, after the parameters have been 
normalized. Since the features are normalized from 0-1, MAE 
depicts the mean absolute % age error in the prediction, and is easily

interpretable for evaluating performance every time a hyperparameter 
has been changed. 

DIFFERENT TECHNIQUES USED 
There are many different techniques that can be used for this time 
series forecasting problem. 

Linear 

This technique is a simple multiple linear regression, with the 
algorithm assigning weights to all weather parameters and predicting 
the PV output of the next timestep. This technique involves auto-
regression of weather parameters and PV output, so that weights can 
be given to the weather parameters for the next timestep for the 
multiple timesteps ahead forecasting objective. 

CNN 

This technique involved the usage of 1 convolutional layer and 2 
hidden dense layers with 64 units, as well as 1 output layer. The 
convolutional layer contained 32 filters and a 7x7 kernel, connected 
to a dense neural network with 2 hidden layers of 64 units each. The 
window size used was 7 timesteps, as this was the most suitable 
window size, as discussed in the section discussing hyperparameters. 
The convolutional layer is used to help split each of the data features 
to help the dense neural network easily predict each part and then 
give weights to the original inputs of the convolutional layer. The 
figure below shows an example of convolutional window (Figure 7). 

Figure 7) Convolution window CNN model 

Multi step dense 

This technique was similar to the single step dense neural network, as 
it involved 2 dense layers consisting of 64 units each and one output 
layer, however the window-size was 3 timesteps. This meant that the 
previous 3 timesteps were being used to predict the next timestep for 
the single step output. This technique is used to check how important 
autoregression of weather parameters is to the model. With three 
timesteps of given input data, it gives the algorithm better knowledge 
of the dependence of the next timestep on the previous timestep (i.e 
autoregression). 
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This technique involved the usage of 1 convolutional layer, 1 LSTM 
layer, 1 dense layer and 1 output layer. The convolutional layer 
contains 32 filters and a 7x7 kernel, with the tanh activation 
function. The window size used was 7 timesteps, as this was the most 
suitable window size, as discussed in the section discussing 
hyperparameters. The LSTM layer con- tains 32 filters as well, whilst 
the dense neural network consisted of 1 hidden layer of 64 units. 
First the convolutional layer was used to extract deeper features from 
the original weather data, and then the LSTM layer, as seen in (Figure 

8) is used to help with finding long term time series features. This
gives the dense layer more features, which it was able to use to good
effect. Then, backward propagation occurred, which helps to find the
weights of the original inputs. With multiple timesteps ahead
forecasting, the CNN LSTM model also has autoregression taking
place, such that the results of the first output, as well as the previous
6 given inputs are used to predict the results of the next output,
(Figure 8). Figure 9) RNN model recursion loop 

This model has a clear advantage to others, as it can be adjusted easily 
to give an output length of many timesteps ahead, and due to 
the autoregression, it has a higher accuracy rate. However, the 
downside is that this model can only be run well on multiple 
timesteps forecasting as it as an autoregressive model. For the 
prediction of one timestep ahead forecasting, it would give no 
different results to the usual dense network. 

Baseline 

The baseline model is used as a metric of comparison, as it 
shows the error of assuming that the next output is equal to the 
last PV output. If the baseline error is lower than the error of 
the other model, it is an indication that either the data is heavily 
skewed, or the model has been formulated incorrectly. In a multi-
step model, an additional baseline technique is used, which 
repeats the pattern of the last n given inputs for the next n 
outputs, where n is the number of timesteps forecasted. 

HYPERPARAMETERS 

In this section, the paper discusses the different hyperparameters 
which need to be tuned and the values they have. 

Regularization parameter (λ) and number of epochs
The number of epochs or iterations the model had to run on the 
training set is another important hyperparameter. This was highly 
important to get the optimal weights for the model to ensure that 
neither underfitting nor overfitting was taking place. In addition to 
this, another hyperparameter which was used to prevent overfitting 
was the regularization parameter; λ. This added weight penalized 
overfitting, but it had to be tuned in order for it not to be too low 
which would have caused overfitting, but also for it not to be too 
high, which would have caused underfitting. After testing 4 times, the 
optimal value for λ turned out to be 1e-2 for the CNN LSTM model 
and 1e-1 for all the other machine learning models. 

Convolution window 

Another very important hyperparameter for the convolutional neural 
network was the window width. This would help determine 
how many previous timesteps would be used to predict the next time 
step for the various different models. For example, the convolutional  

CNN LSTM 

Figure 8) LSTM model with tanh activation function 

RNN LSTM 

This techniques involves the usage of one LSTM layer, to help 
serve as a building block for the other layers. The LSTM helps 
assign certain weights which helps the RNN let new in- formation 
in, forget information or assign it importance to the output. As this 
technique is used instead of a normal recurrent neural network, due 
to the issue of vanishing gradients [10-11]. The figure below gives a 
visual representation of the RNN model, (Figure 9). 

Dense neural network

This technique involved using 3 dense layers consisting of 64 
units each, and one output layer. The window size for this 
technique is only 1 timestep, implying that only the previous 
timestep is used to predict the next timestep. This technique is used 
as it is important to strike a comparison between the other neural 
network techniques and the conventional neural network. 

AR LSTM 

This technique involves using one LSTM layer, one RNN layer, one 
dense layer and one output layer. This technique helps with 
the autoregression of PV through time, and therefore this is used for 
the multiple time steps forecasting.  

J Pure Appl Math Vol 7 No 2 March 2023 
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window width, used for the CNN and CNN LSTM was 7 timesteps, 
as it gave results with lower MAE than any of the window sizes 
greater or smaller than 7. 

Learning Rate(α) 

Another hyperparameter which required tuning was the learning rate 
α. It is necessary to alter the learning rate to an optimum to ensure 
that neither overshooting nor slow gradient descent was taking place. 
After 5 iterations of the program, it could be seen that the optimal 
solution for the learning rate was 8e-4. 

Activation function 

The activation function was another very important hyperparameter 
to tune. The method used to find the optimal activation function was 
to take the average of three runs for each of the three activation 
functions: tanh, relu and sigmoid and compare the mean absolute 
%age error for each of the functions. From the results of each of 
three runs, it could clearly be seen that the optimal function was the 
tanh activation function. This was a very important hyperparameter, 
as this caused a significant increase in the model performance. 

Optimizer adam 
The optimizer being used is the Adam (Adaptive Moment) optimizer, 
as it is computationally faster than other optimizers, and requires 
fewer parameters for tuning than other optimizers, as it tunes 
the parameters by itself, (Figure 10-14). 

RESULTS 
Single step ahead model 
Linear weights 

Figure 10) Weights for linear regression model 

Linear 

Figure 11) Predicted vs actual values for linear regression model 
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CNN LSTM 

Figure 12) Predicted vs actual values for CNN LSTM model 

RNN LSTM 

Figure 13) Predicted vs actual values for RNN LSTM model 

CNN 

Figure 14) Predicted vs actual values for CNN model 

COMPARISON 

As can be seen from the figures below, the results for the CNN LSTM 
model are the best, with an error of less than 8 % for the training set 
and validation set, (Figure 15,16). Additionally, the RNN LSTM 
model is also quite successful, giving very similar errors to the CNN 
LSTM model. This implies that the LSTM layer is highly beneficial in 
the prediction, and helps with getting the most important features. 
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Figure 15) Comparison of MAE for training, test and validation data for all 

techniques 

Results Table 

Figure 16) Different techniques MAE for single time step forecasting 

DISCUSSION OF RESULTS 

For the single time step ahead forecasting, the results can be seen in 
Figure 15 and Figure 16. As expected the CNN LSTM model had the 
best results with a 6% error. This is due to the convolutional layer 
and the LSTM layer, which help to adapt the given features into 
different features. Given such a vast amount of features, the dense 
network was able to assign weights to the original features via 
backward propagation. The RNN LSTM model also performed quite 
well, as the LSTM layer was able to help with giving the RNN layer 
certain weights to help the model remember or forget features 
depending on their importance. Additionally, the problem of 
vanishing gradients was not present, hence the model was able to 
backward propagate to give all the weights. 

Multi step ahead forecasting 
In this model, the errors were found to be much higher than in the 
single step ahead forecasting, and the baseline algorithm gave 
significantly higher errors, of around 0.38 or 0.39 in comparison to 
the other techniques which gave errors of close to 0.11 or 0.12. This 
is because, the autoregression is more useful in multiple step ahead 
forecasting, whereas it is not as useful in the single step ahead 
forecasting. Therefore, the AR LSTM model has done the best on this 
data, whereas the other models have not done as well, (Figures 17- 22). 

Linear weights 

Figure 17) Weights for multiple step ahead linear model 

AR LSTM 

Figure 18) Predicted vs actual values for AR LSTM model 

RNN LSTM 
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Figure 19) Predicted vs actual values for RNN LSTM model 
CNN 

Figure 20) Predicted vs actual values for CNN model 

Dense 

Figure 21) Predicted vs actual values for dense model 

Linear 

Figure 22) Predicted vs actual values for linear model 

Comparison 
As can be seen from the figures below (Figures 23,  24), the results for 
the AR LSTM model are the best, with an error of close to 11% for 
each of the training, test and validation set. The baseline models have 
a very high error, as they are unable to perform autoregression, and 
the data changes drastically for multiple hours ahead forecasting and

hence the models that do autoregression have a marked 
improvement. The RNN LSTM model was also very successful, due 
to the fact that it used the LSTM layer as well, which helped to 
reduce the unimportant features, but include more important 
features. For the RNN in particular, it also got rid of the vanishing 
gradient problem, hence this gave results of close to 12 % error. The 
errors of the multiple step forecasting, however, are very significantly 
higher than that of the single step ahead forecasting, due to the fact 
that the errors increase incrementally for each timestep the model is 
forecasting. 

Figure 23) Comparison of MAE for different techniques in training, test and 

validation set 

Results table 

Figure 24) Different techniques  MAE for multiple time step forecasting 
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CONCLUSION AND SCOPE FOR FUTURE WORK 
From the results above, it can be concluded that the best technique 
for solar PV forecasting of one timestep ahead is the CNN LSTM 
method, and best technique for solar PV forecasting of multiple 
timesteps ahead is the AR LSTM method. For both techniques, the 
common layer in the model is the LSTM layer, which helps to remove 
unimportant features and gives important features higher weights. 
For the single timestep ahead forecasting, the convolutional layer 
helps to split the original features into multiple different features, 
which is fed into the LSTM layer, to find the most important 
features. For the multiple timestep ahead forecasting, the 
autoregression of the AR LSTM model helps to better predict the 
weather data for multiple timesteps ahead, and this in turn makes it 
easier to predict the solar PV output data. 
To give the model a better sense of seasonality, the dataset for 
training, test and validation set could be split differently. Instead of 
choosing the first 75 % to be training data, the first 75% of data for 
each month could instead be chosen to be training data, the next 15 
% of each month to be validation data and the last 10 % of each 
month to be test data. In this manner, the algorithm would be able to 
distinguish between months and give the seasonality for different 
months, which would make the model better. 
Another method which could be used for future improvements. This 
method involves the clustering of days of data into certain categories, 
and then performing pairwise predictions on this data using k-nearest 
neighbors and neural networks. This is useful if weather does not 
change drastically throughout a day, as it classifies that a day as sunny 
or rainy and then calculates the PV output given this classification. 
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