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 HYPOTHESIS 

On the injectivity of an integral operator connected to Riemann 
hypothesis   

Dumitru Adam 

INTRODUCTION  
n his paper Alcantara-Bode proved (Theorem 1 pg. 152): the 
Riemann Hypothesis (RH) holds if and only if the following Hilbert-

Schmidt integral operator T defined on L2 (0, 1) by:

( )
1

0
( ) ( ) (1)y

xT u y u x dx=

has its null space {0}TN =  where the kernel function is the 

fractional part function of the expression between brackets [1]. This 
integral operator has been introduced in (Beurling, 1955) for providing 
first equivalent formulation of RH [2], in terms of functional analysis. 
Beurling equivalent formulation of RH has been used by Alcantara-
Bode in the second equivalent formulation of RH in terms of the 
injectivity of the operator in (1). The Alcantara-Bode formulation 
allows a different approach of the RH by using applied mathematics 
techniques in finding the injectivity of this integral operator. 
 A very captivating view on RH could be found in [3]. 

We provide a method for investigating the injectivity of the linear 
bounded operators on separable Hilbert spaces using their 
approximations on dense families of subspaces. In this paper the norm 
used is the norm induced by the inner product. A dense family of finite 

dimension including subspaces is an infinite collection of subspaces 

{Sn}, n ≥ 2 in H, with the properties: Sn ⊂Sn+1, n ≥ 1 and 
1 Hi iU S= = . 

The idea behind this method is based on the following observations. 
If a linear, bounded operator T on H strict positive definite on a dense 
family of including subspaces has a zero, u ∈ NT not null, it cannot be 
in any subspace of the family. 

If u B : u H; 1u= = is not in any subspace of the family, it 

has its orthogonal projections on the family {un}, n ≥ 1, verifying 

1nu with n→ . Because between the orthogonal projections of

u and its residuum (u − un) there exists the following relationship
2 2 1,n nu u u+ − = there exists n0 such that for n ≥ n0, 

.n nu u u− Now, if C is a constant > 0, there exists  n1

such   that   C n nu u u− once n > n1. 

Or, as we proved, a such element u ∈ B could not be in the null space 
of the operator T, if C is a inferior bound of the set of the injectivity 
parameters of T, {µn}, n ≥ 1, parameters that are defined when T is also 
Hermitian, as the ratio between smallest and largest eigenvalues of the 
restrictions of T on the family’s subspaces.  
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ABSTRACT 
The equivalent formulation of the Riemann Hypothesis (RH) given 

by Alcantara-Bode (1993) states: RH holds if and only if the integral 

operator on the Hilbert space L2 (0, 1) having the kernel function 

defined by the fractional part of (y/x) is injective. This formulation 

reduced one of the most important unsolved problems in pure 

mathematics to a problem whose investigation could be made by 

standard techniques of the applied mathematics. 

The method introduced to deal with, is based on a result obtained in this 

paper: an operator linear, bounded, Hermitian on a separable Hilbert space 

strict positive definite on a dense family of including subspaces, subspaces on 

which the sequence of the ratios between the smallest and largest eigenvalues 

of the operator restrictions on the family is bounded inferior by a strict 

positive constant, is injective. Using a version of the generic method for 

integral operators on L2 (0, 1) we proved the injectivity of the integral 

operator used in the equivalent formulation of the RH. 
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Indeed, it follows from Lemma 1 that if u ∈ NT ∩ B then 

n n nu u u− on the approximation subspaces for n ≥ n0 (u) 

and so, the sequence of the injectivity parameters {µn} must converge 
to 0 in contradiction with its inferior bounding by a strict positive 
constant C. So, we will set accordingly our working environment in 
order to build the method. 

Observation 1. Suppose S is a subspace of a separable Hilbert space H 
on which T, an linear, bounded operator is strict positive definite: 

2 ,v Tv v for every v∈S. If there exists u ∈ NT satisfying 

|S 0P u where |SP u is the orthogonal projection of u on S, then 

|S | (2)SP u u P u−

where ω > 0 verifies T v v  for every v in S. 

Proof. If u ∈ NT then u ∈ H\S and | 0.Su P u− If exists w ∈ S⊥

such that Tw is not null and , 0Tw v , for every v not null ∈ S, 

then ,Tw v w T v . Taking |Sv P u= and w = (v - u)

follows  

( ) ( )
2

|S | | | | | |P , = , ( )S S S S S Su T P u P u T P u u P u u P u T P u− −

proving the observation. 

Let F = {Sn, n ≥ 1} a dense family of finite dimension including 

subspaces and denote LF the class of the linear, bounded operators on 

H that are strict positive definite on every Sn ∈F. If T ∈ LF for every vn 

∈ Sn, n ≥ 1 and for every Sn ∈F holds 
2 

n, ,  0 (3)n n n nTv v v

Applying the Observation 1 on the members of the dense family F 
follows: 

Lemma 1. Let T∈ LF. Suppose u ∈ NT and denote 

( ) :n nu u u= − with | nn Su P u= , the orthogonal projection of 

u on Sn. Then

0 0( ), : ( ) (4)n n nu u n n n u=

where n n n n/ ,µ = verifying 
nT v v  for every v ∈ Sn, 

n0(u) being the index of the subspace from where the projections un are 
not null. 
Proof. A such index n0(u) there exists for every u because of the density 

of the family F in H adding, for n < n0 (4) is trivial for every u and any 

subspace once the orthogonal projections are zero for n < n0. The 
inequality follows applying the Observation 1 on each subspace Sn from 
the dense family. 

A criteria for linear operators injectivity 

Let T ∈ LF. If u∈ NT then nu S , n ≥ 1, following
T 1N H \ .n nS=

We define the set of the eligible normalized zeros of the linear bounded 

strict positive operators on the family F by: 

( ) ( )0 0 n 1 nB : B ; H \ S , 1F u u u== = =

So, if u∈ NT then T 0/ N B .u u

On the eligible set B0 we consider the following expression: 

( ) ( ) ( ) ( )
2 22 2 2

n  n n nu : u u 1 1n
T

n nµ u µ u= = − = − +

where we exploited the relationship for an eligible u between its 
orthogonal projection on Sn and its residuum (u - un), 

( )
2 2 2

n u . nu u= +

Theorem 1 (Injectivity Criteria). Let T∈ LF. If there exists a strict 

positive constant C independent of n, such that µn(T)≥ C > 0 for every 
n ≥ 1, then T is injective. 
Proof. Suppose that the sequence {µn}, n ≥ 1 is inferior bounded by a 
constant C independent of n, strict positive and let u ∈ B0. If there 
exists an infinite subsequence of subspaces from the family for which 

( ) ( )m 0u 0,  n n u
mn

then: ( ) ( )
2 2 21/ 1 1/ 1 1

m mn nu C+ +

and ( )
2 2lim 1/ 1 1

mm nu C→ +

Or, ( )
mn m 0u ,  n n u , like {un}, n ≥ 1, should converge in norm to 

1 on the approximation subspaces for every u ∈ B0. 
Thus, the inequality ( )

mn u 0 could not take place on an infinity of 

subspaces of the family. We should have instead at most only a finite 
number of subspaces verifying it. 

If there exists a finite number of subspaces on which ( )
mn u 0 , nm

≥ n0(u) then there exists an index n1(u) such that we are in the situation 
θn(u) < 0 for every n ≥ n1(u). 

If θn(u) < 0 holds for n ≥ n1(u), then 1( ) , ( ).n n nu u n n u
But, u satisfying such relationship could not be in NT because a reverse 
inequality given by Lemma 1 holds for eligible u ∈ NT. The only 
restriction we put on u ∈ H, has been its eligibility, u ∈ B0. Thus, if 
{µn}, n ≥ 1 is inferior bounded, does not exists u ∈ B0 that is in NT. Or, 
B0 contains all normalized zeros of T, so NT ={0} Q.E.D. 

Lemma 2. If T is linear, bounded strict positive definite on F and the 
sequence of the injectivity parameters are bounded by a constant, then 
T is injective. This property is a immediate consequences of the 
property of boundness of T on H and so on every subspace of the 
family. 

If T is not strict positive definite on F then we consider its associated 
Hermitian (T*T). If (T*T) is not strict positive definite on F then it has 
a zero in one of subspaces of F and so, T and (T*T) are not injective.  
While the strict positivity of the operator or of its Hermitian is 
mandatory for injectivity, the injectivity criteria Theorem 1 is only a 
sufficient condition as we observed from our example on the last 
paragraph. 

Nowhere is included the Hermitian property in the proof of the 
Injectivity Criteria. We will replace the operator with its Hermitian 
when the original operator is not strict positive on the dense family of 
approximation subspaces or when we do not have enough information 
about its positivity - the reason is, both have the same null space and 
the Hermitian is positive definite on H.  
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When the linear operator T is Hermitian and strict positive on a dense 
family of finite dimension subspaces, then ( ) ( )n min n max nT / T .µ =

For showing it, it is enough to consider the finite dimension (sub)space 
Sn equipped with the orthonormal basis of the eigenfunctions of Tn in 
order to express αn and ωn function of the eigenvalues of Tn. 

Approximations of the Integral Operators 
Let consider in the separable Hilbert H:= L2 (0, 1) the dense family of 
including finite dimension approximation subspaces 

h: S ;  nh 1,n 2 ,F = = where
h h,kS : , 1, , 1span k n nh= = =

spanned by indicator functions of disjoint intervals covering the 
domain (0,1):  

1 : (( 1) , ]
0: ( ) (5)kt k h kh

h,k h,k otherwiset = −
= =

This family of approximation subspaces has been used in dealing with 
decay rate of convergence to zero of the integral operators’ eigenvalues, 
operators having the kernel functions like Mercer kernels [4], i.e. 
Hermitian and at least continue [5-7]. We will use this family for 
investigating the injectivity of the linear bounded integral operators. 
The family of functions 

h,k{ } , k = 1,n, nh =1, defines a trace class

integral operator with the kernel function 

( ) ( )1
,k h,k

1
, h ( ) y  

n

h h
k

r x y x−

=

=
that is an orthogonal projection in L2 

(0,1) on Sh having the orthogonal eigenfunctions 
h,k , k 1, n= (see 

[5]). In fact, each Sh ∈ Fχ is generated by the families of the orthogonal 

eigenfunctions of the projection operator 
hh |SP :  P .= Thus, the the 

kernel function  of the linear integral operator 

( )( ) ( ) ( )
1

0
T : T , (6)u u y y x u x dx= =

has the discrete approximations on Sh, nh = 1, n ≥ 2 given by [5]: 

( ) ( ) ( )1
h h,k h,k

1
,  h ( ) ,  1,n 2      (7)

n

k
y x y y x x nh−

=

= =

Observation 2. Taking a look at the kernel function h , we observe 

that it is a sum of ’orthogonal piecewise functions’ once each term in 

the sum, ( ) ( ) ( )
h h,k h,k, ( ) ,  1, , 1k y x y y x x k n nh= = =

is zero valued outside the square ( )k k . So, the matrix 

representation of the corresponding restriction operator will be 1-
diagonal sparse matrix.  
The dense family has including finite dimensional subspaces, 

h h/2S S , so, if the integral operators
h

T having the kernel 

functions h are strict positive definite then we fulfill the hypothesis of 

the Injectivity Criteria for the linear, bounded integral operator in (6). 
Thus we could proceed computing the components αh and ωh of their 
injectivity parameters {µh} (see, (4)) using the matrix representation of 

the restrictions of the operator T  on the finite

dimension subspaces 
hS    F . 

• A formula for h . Let h 1, k h,k h v c Sk n== . 

Then 
1, k k kk, = c c d c M c

h

h T
hh h k n hT v v = = where M h

 is the 

matrix representation of the restriction operator 
h

T  to Sh having

the entries 

( ) ( ) ( )1
h,k h,k h,k h,kT ,  h ,

k k

h
kkd y y x x dxdy−= =

Obviously, M
h

 is a diagonal matrix due to
, , , , 1, .h i h j ij i j n= =

If its entries are positive valued, then 

( )
22

1,n,  h min dh
h h k kk hT v v v−

=
 and 

( ) ( ) ( )2
1, h,k h,kh min , (8)

k k
h k n y y x x dxdy−

==

• A formula for ωh. From

( )
2 2* * 1 *

k 1,n k k 1,c c d h max dh h
h kk k n kk hT v v−

= == where 

2* * * *
h,k h,k h,k,h

kkd T T T= =

( )( )2
h,k h,k h,k h,k( ) ( , ) ( ) ( ) ( , ) ( )

k k k

h y x y x dx y x y x dx dy−=

we obtain ( )
1/2* 1/2 *

1,max h
h k n kk hT v h d v−

=
. Thus 

3/2
1, ,max (9)h k n h kh−

==

Where 

( )( ), h,k h,k h,k h,k( ) ( , ) ( ) ( ) ( , ) ( ) .
k k k

h k y x y x dx y x y x dx dy=
 

On Alcantara-Bode Hypothesis 
The kernel function of the linear, bounded Hilbert-Schmidt integral 

operator in (1), ( )y, x  y / x=  as a function ∈ L2(0, 1)2 is 

almost continue everywhere because its discontinuities lie on lines in 
(0,1)2 of the form y=kx, k ∈N, that is a countable set of Lebesgue 
measure zero subsets and so, of Lebesgue measure zero and so will be 
the kernel of its associated Hermitian integral operator. In line with [5-
6] we will consider the dense family of approximation subspaces Fχ
introduced in previous paragraph in order to investigate its injectivity.

The entries of the diagonal matrix 
h

M , the representation of the 

restriction of the operator T  on Sh defined by:

h,k h,k, , 1, 2.
k k

yh
kk xd T dxdy nh n= = =  are: 

2 2
1

11
2 1(3 2 ); ( 1 ln( )

4 2 1 1
h h k

kk
h h k kd d

k k
−−

= − = − +
− −

where γ is the Euler-Mascheroni constant (∼= 0.5772156). The 

sequence 12 1
1 1( 1 ln( ) )kk k

k k
−−

− −
− +  is monotone and converges to 0.5 

for k → ∞. These entries are strict positive valued, bounded by 2
11
hh d−

and 2
22
hh d− on Sh, showing that T F having the strict positivity 

parameters given by 

2
11

1 (3 2 ) (10)
4

h
h h d−= = −

)
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So, αh is a strict positive constant ∀n ≥ 2, nh = 1. We could apply 
Lemma 2 to obtain the injectivity without computing the ωh 

parameters knowing that *T  is bounded. However, we will proceed

with the computation of ωh (See the note from the next paragraph). 
Taking in consideration that the kernel function of the adjoint 

operator is ( ) ( ),  y ,  yx x=  verifies sup ({x/y})<1  on each 

square ( )k k of area 2h , nh = 1, n ≥ 2, the integrals in ,h k

are superior bounded by h, obtaining from (9) 
h 1 and so, 

( )1
h h 4 3-2 .µ = Then, Tφ is injective due to the injectivity criteria. 

Has no meaning to use the associated Hermitian operator once the 

operator is strict positive on Fχ and injective, both having the same null 
space. 
Anyway, let’s consider the associated Hermitian operator *T : T T=

of the integral operator in (1) having the kernel function 
1

0
( , ) ( , ) ( , )y x y t x t dt=

It is easy to observe that ( ) ( ) ( )
22 1

h 16T T 3 2 , 1,n 2.h nh= = − =

So, T FL is injective if we apply Lemma 2. On the other hand,

( ) ( )* *
h hh h

T T v T T v shows that ( ) ( )* *
h h

T T T T=

is bounded by a constant as is
h

. Follows ( )( )*
h h

T Tµ is inferior 

bounded by a constant showing the injectivity of the operator avoiding 
Lemma 2. We just proved using the Injectivity Criteria: 

Theorem 2. The linear bounded Hilbert-Schmidt integral operator 

T on L2 (0,1) having the kernel function the fractional part function

( , ) : { }y
xy x = defined by 

1

0
( )( ) : ( , ) ( ) (11)T u y y x u x dx=

used for providing the equivalent formulation of Riemann Hypothesis 
[1], is injective, or equivalently, has the null space 

TN {0}= . 

Some numerical aspects of the method 
The method of operator projections using the finite rank operators 

associated to the family Fχ is backing up our choice to use the dense 
family for approximating the Beurling - Alcantara-Bode integral 
operator and we consider a consistent discretization approach. To 
justify the affirmation, let  a kernel function on L2(0, 1)2 and its 

approximations on Fχ be 

( ) ( ) ( ), ,
1,

( , ) y , ,nh 1, {0}. (12)t
h h k h k

k n
x y h y x x t N−

=

= =

We observe from (8) and (9) that the injectivity parameters are 
independent of t by replacing h−1 with h−t. We find the kernel 
approximations for t = 0 in [6]. For t = 1 we find it in [5]. We have: 

( 0) ( 1)t t
h h
= == . 

The injectivity criteria could be reformulated: if the components of 
the injectivity parameters alpha and omega are of the same order of h, 
then 

the linear operator is injective. This is the reason why Lemma 2 could 
be applied with caution choosing a consistent discretisation using 
orthogonal projection operators on approximation subspaces like in 
[5]. 

Observation 3. The following operator is injective having its injectivity 
parameters converging to 0. 
The operator obtained as a product of identity by a power of x, 

sI ,

s ∈ N on L2(0,1) as follows: for u ∈ L2 (0,1) 

( )( ) ( ) . . : ( ) ( ) (13)s s
s sI u x x u x i e I u x x u x= →

sI is linear, bounded, strict positive definite and Hermitian on L2(0, 

1) and so, strict positive on Fχ. The injectivity and positivity properties

on H are coming from 1

0
, ( ) ( ) 0sI u u w x w x dx= for 0u

where 
/2( ) ( ).sw x x u x=

The components of the injectivity parameters using the theory exposed 
in the previous paragraphs are obtained as follows: given 

1, , ,h k n k h k hv c S==

1, , ,, ( ) ( )
k

s
s h h k n k k h k h kT v v c c x x x dx==

121
1, ( 1)1min ,s khx

h k n k hsh v +−

= −+
 following 

1, , 11( ) min ( ),sh
h S k n k ssT = ++

= where , ( 1) .q q
k q k k= − −

From 
22 2* 2

1, , , 1, ,2 1(2 1)( ) ( ) maxs

k

s h
s h k n k k h k h k h k n k ssT v c c x x x dx v= = ++

=

we have 1, ,2 12 1
maxss h

h k n k ss = ++
= . Now, 

2 1 2 1 2
,2 1 ( 1) (2 1) .s s s

k s n n s n+ +

+ − − + Then 2 2 1.s s s
h h n =

showing that for s 1 0s
h → and s

h is a constant. 

For s=0, Ts ≡ I, and 0 01/ 2, 1,s s
h h
= == = and ( )h I is constant. 

Instead, for s 1 h  is bounded by a constant and, h 0→ together 

with h .

Thus: sT , s 1 , has its injectivity parameters violating the request of 

the injectivity criteria ( )h Cµ showing that the injectivity criteria 

Theorem 1 is only a sufficient condition for the injectivity [8]. 
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