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 RESEARCH 
 Principles of prime numbers - Part I-New definition of 

prime numbers with modNt number system & induction 
James M McCanney 

INTRODUCTION 
his is Part I of a multiple series set of papers. This paper introduces 
the concepts presented in the book [2] “Principles of Prime
Numbers – Volume I” 2010. Future papers will develop advanced 

topics from Volumes II and III. The current paper presents topics of 
Nature’s Number System (modNt) but uses primarily base 10 (mod10) 
numbers while the reader is getting used to the concepts involved. The 
future papers will move to using primarily the modNt number system. 
This number system represents the numbers with each digit 
representing the ancestry of the prime number back to the original base 
prime numbers.  

The newly developed methods break the problems into pieces that can 
be solved individually then combined to give a complete solution. 
Previously, primes were thought of as “random or pseudorandom 
numbers with no patterns”. Trying to understand prime numbers as a 

linear progression has been partly at fault. Prime numbers are now 
organized and generate future prime numbers in groups and families 
with ancestors and descendants. This is key to create the organization 
to solve more complex problems. 

The “Calculate Primes” Generator Function system of directly 
calculating prime numbers is made more understandable in the 
current text because of the visualization using tables defined as “Sppn 
and Rppn Tables”. It is the same prime number solution, but visual. By 
dividing the direct calculation of primes into small manageable groups 
which have well defined parameters and mathematical properties, one 
can now solve problems with understanding that were not available 
before. Each group generates the next group with known parameters 
giving rise to proofs by Induction. This is the “TOOL” that everyone 
has been looking for over the past 2500 years. The mathematical 
system, as explained in “Calculate Primes”, involves such mathematical 
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ABSTRACT 
This is a treatise on Primal Numbers which results in the solution 
of long outstanding unsolved problems of the prime numbers. 
Primal numbers are Nature’s Number System defined herein and 
are built with a completely new set of criteria. This work builds on 
and greatly expands the work presented in earlier texts [1]“Calculate 
Primes” 2007 and [3] “Breaking RSA Codes” 2014. The original 
release was in a paper submitted to a mathematics journal 
“Principles of Prime Numbers” 2006. A new number system is 
developed based on prime numbers and a new visual representation 
is presented in the form of “Sppn and Rppn Tables”. The 
understanding of Prime Numbers as a complete system of 
mathematics continues with visualizations of the results of using the 
“McCanney Generator Function” which directly calculates prime 
numbers in groups. The base N modulo number systems (e.g. the 
most common of which is base 10) are shown to be inadequate to 
understand the true nature of Prime Numbers, which are the 
building blocks of all of mathematics. It will be shown that trying to 
understand prime numbers using base 10 has been the hinderance 
that has kept solutions since the ancient Greeks first formulated the 

first unsolved problems (many which exist yet today). The solutions to 
outstanding unsolved problems have mainly been because the tools were 
not available to understand the prime numbers as a complete number 
system in their own right. The research originally intended and found 
the basis for proofs by Induction since the tables generate future tables. 
The result is that the prime numbers all belong to families with ancestors 
and offspring. This leads to the discovery (Calculate Primes 2007) that 
all prime numbers have an ancestry going back to 0 and 1 and the Peano 
postulates. They are not simply the numbers missing from the standard 
multiplication tables or numbers in a sieve process of elimination. They 
are not derived from brute force factorization calculations (as is done in 
traditional computer computational mathematics) but are directly 
calculated in groups from previous groups of Prime Numbers. The 
definition that prime numbers are those numbers divisible by only 
themselves and 1 is shown to be lacking in scope and gives no 
understanding of the true nature of prime numbers or natural occurring 
number systems. It also leads to ambiguous concepts regarding the 
numbers 0 and 1.  

Key words: Prime numbers; Number systems; Generato r function; Nature’s 
number system 
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properties as Closure, Symmetry, Reciprocity, Completeness and a 
wave pattern that allows equations to be generated with wave lengths 
that extend to infinity. At last, a system exists to predict the future of 
prime numbers and solves the issue of density of primes as one moves 
out on the number line. It is proven that the equations for prime 
number generation are simply bounded. The concept of finding “rogue 
primes” and “rogue gaps” is finally solved, and it is shown that in the 
Generator Function structure, prime numbers are a monotonically 
decreasing density function that is important in understanding prime 
patterns. Theorems are developed proving that all prime numbers 
generate an infinite number of future prime numbers and likewise all 
have ancestral patterns in the primes going back to the alpha prime 
“0”. These are used to understand and offer solutions to the Twin 
Prime Conjecture and Goldbach Conjecture unsolved problems. The 
prime numbers are generated in groups using the Generator Function 
by only addition and subtraction of previously discovered prime 
numbers (discovered in the prior iteration of the Generator Function).  

Discussion of multiplication tables, sieves, wheels, formulas/categor-
ies of primes, the riemann hypothesis and computational methods 
Before looking at the Generator Function and related solutions, it is 
important to define terms and identify prior methods of determining 
prime numbers so there is no confusion or false claims that the current 
work is one of these. These prior methods tend to work with small 
prime numbers but soon lose their ability to locate primes and one 
then has to revert to division by prime numbers (factorization) to 
determine primality. 

Multiplication Tables: The most fundamental method of locating 
prime numbers is to create a multiplication table and note that all the 
numbers missing are the prime numbers. The draw back is that you 
have to write all the natural numbers to find a decreasing number or 
primes. Finding these missing numbers becomes increasingly difficult 
and time consuming as you grow to larger numbers. You also have to 
repeat many iterations (all multiples of 2, 3, 5, etc). Of all the primitive 
methods this is the least productive and as I recall was my first 
introduction to prime numbers in grade school. Unfortunately, that 
situation has not changed to this day. 

Sieves: The next stage to streamlining the multiplication table process 
in locating primes is called a Sieve. There are numerous forms of 
Sieves, but all are basically variations on the same theme. You take a 
list of all natural numbers and begin crossing out the numbers that are 
multiples of known small prime numbers, leaving a very small select 
list of primes relative to the large number of numbers at the beginning 
of this process. The issues with a sieve are that 1) you need to know the 
prime numbers before you start the process, so it only is valid for small 
numbers for which you already have the prime number solutions and 
2) you have to list all the natural numbers (as with the multiplication
table method it is a process of elimination starting with all numbers)
so it is not a number system based on just prime numbers but likewise
an elimination from the entire list of natural numbers. Most
importantly, it ultimately resorts to factorization to identify the prime
numbers for more eliminations and lastly 5) IT HAS NO
PREDICTIVE PROPERTIES. All of these issues are what separate the 
Sieves from the work presented in this paper. To be clear, in the
current paper, we only use prime numbers to generate more prime
numbers using just addition and subtraction, you do not use the non-
prime numbers, you start with the smallest possible set (beginning with 
just 0 and 1) and build to larger groups (which grow very rapidly).
Primes are discovered by direct calculation from prior known primes.
The method works on patterns of prime numbers and predicts prime
numbers to infinity including individual prime numbers, twin prime
pairs, prime pairs of any gap size and creates an alternative proof to the 
prime counting function and additionally puts an upper limit on the
counting function (something that had not existed previously). This is

stressed here because the first utterance from some people too 
incumbered by sloth to read the entire paper would try to negate the 
current work as a Sieve prior to reading and understanding it. Then 
those who are even more incumbered by sloth would rely on those false 
claims to revert to their comfort zone. To be clear, the current wo rk is 
no t a Sieve . 

Wheels: There are dozens of attempts to organize or predict prime 
numbers based on patterns that can be represented as consecutive 
squares, complex tables, multisided objects or concentric circles 
(usually based on basic number associations). They seem to work for 
small numbers but very soon break down or develop large numbers of 
false (non-prime) numbers. They generally are followed by long lists of 
“rules” that break down as numbers get larger. As a result, one has to 
resort to factorization to determine primality. Many amateurs have 
fallen into the traps of using such limited models. One such “wheel” 
depends on multiples of 6 and another recent attempt relied on prime 
numbers less than 210 with long lists of convoluted “rules”. These arise 
from people noting nuances in the lists of small prime numbers but 
which fade quickly. One very interesting wheel or circle pattern 
involves making concentric circles with 24 divisions (the first inner 
circle numbered from 1 to 24). The next outer circle likewise has 24 
divisions numbered from 25 to 48 with the next circle numbered from 
49 to 72 and so on. This is not a new discovery but simply restating the 
long known fact that if you create a circle with 24 divisions, all of the 
squares of primes will be found on the radial line above the number 1. 
That is, the squares of prime numbers all differ by a multiple of 24. An 
equation can be written which is the opposite of this known fact of 
prime numbers and as you will see is not very useful in predicting prime 
numbers. It quickly fades to having many false predictions. It has some 
value in predicting the squares of primes which is related to certain 
analysis results. To create the circles ... draw a series of concentric 
circles. In the first circle divide the outer circumference into 24 
divisions. Number these from 1 to 24 in the clockwise direction. On 
the next circle outwards (also divided into 24 sections), the numbers 
should be the number on the first circle +24. So the radial line 
extending out from 1 will have the values as follows: (notice that it skips 
2^2 and 3^2) starting on the next page. 

1 + 0x24 = 1 (the first circle) 
1 + 1x24 = 25 = 5^2 (the second circle) 
1 + 2x24 = 1 + 48 = 49 = 7^2 
1 + 3x24 = 73 (prime) 
1 + 4x24 = 97 (prime) 
1 + 5x24 = 121 = 11^2  
1 + 6x24 = 145 = 5x29 (composite of primes) 
1 + 7x24 = 169 = 13^2 and so one.  

All of the squares of primes fall on this radial line. By subtracting 1 you 
get an integer divisible by 24. The problem with this (or other 
"predictive" formulas such as 6n ± 1, n = 1,2,3…) is that they seem to 
work for small numbers but as the prime numbers become scarce, you 
are getting many more false outcomes than real primes and you must 
then resort to the old brute force method of factorization to see if the 
numbers are prime or not. It is really not very useful. On this theme I 
have proven that all squares of prime numbers in fact fall on this line 
using induction using the Generator Function (something that was 
conjectured before but not proven). Wheels with divisions of 6, 24, 30, 
210 and others have been attempted and all fail. 

Formulas and Categories of Primes: It would take pages to list all of the 
different small equations that have been presented over the centuries 
in attempts to predict prime numbers. Some of the more famous 
include the category of Mersenne Primes which was developed relative 
to the search for “Perfect Numbers”. Volume II of the Principles of 
Prime Numbers (about to be released) covers these categories in detail, 
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comparing them to the Generator Function presented in the current 
work to show their limitations. The simple result is that some 
equations work for small numbers but end up generating far more false 
solutions as the iterations become larger. Mersenne Primes are a 
primary example which has an extremely low success rate with 
increasing number size. Despite this, they are used as a basis for 
calculations using super computers and GIMP calculation networks. 
As with all the simple formulas, they work well for small numbers but 
immediately break down and start producing large quantities of false 
results. As a result, they are relatively useless in the understanding of 
prime numbers and one must then revert to factorization to determine 
if the number is truly prime or not. The current paper shows that the 
Generator Function becomes more accurate with larger numbers. 

The Riemann Hypothesis: It is incorrectly assumed by many that the 
so called “solution” to the Riemann Hypothesis would solve the issues 
of understanding prime numbers. To this end, I refer to the seminal 
book on the subject by John Derbyshire “Prime Obsession” (written 
for the professional and layman alike) where he addresses this topic [2]. 
The proof that all Riemann Zeros lay on the vertical ½ line will not 
bring any additional understanding of locating prime numbers. The 
status is that if anyone discovers a large arbitrary prime number, 
mathematical methods can be employed to show that it in fact also 
creates a zero point on the ½ vertical line. It is the belief of this author 
that the Riemann Hypothesis solution exists and the methods being 
disclosed here provide the tools for a proof by induction. That was one 
of the primary motivators for developing the Generator Function in 
the first place, to create new tools that will allow proofs by induction 
relative to prime numbers, something that had not existed previously. 

Computational Methods: Computer methods use short cuts in 
eliminating numbers as prime numbers but they generally begin with 
Mersenne’s simple formula as a starting point because it is thought to 
produce a higher percentage of results than just picking odd numbers 
at random or in succession. Ultimately, it is brute force computing that 
will find a new large prime number. When the numbers are 
announced, they are generally given in relation to the nth Mersenne 
number related to the discovery. The numbers leave immense 
quantities of primes undiscovered, and the discovery does not provide 
any insight into where the next prime will be found. When the 
numbers are published in base 10 digit format, they truly are a list of 
meaningless digits and do in fact look like so many random lottery 
numbers hooked together. 

The base 10 number system is a hindrance when it comes to 
understanding prime numbers. The elegance that comes from the new 
modNt Nature’s Number System is that every digit signifies the 
ancestry of the number. Every digit has meaning, and every digit relates 
the number back to its ancestry and is then used to build a future set 
of primes that are unique to infinity that have the same base digits. If 
new primes are discovered using the modNt system, they could be used 
to predict the location of larger or smaller primes (a field that some 
may pursue when computational methods are required to claim prize 
money). 

In the development of the Generator Function, which directly 
calculates prime numbers with increasing accuracy, it was necessary to 
have all these failed systems in mind. It is important to repeat here that 
the Generator Function and the visualization of primes in what are 
known as the Sppn Tables, one only deals with prime numbers as a 
complete and distinct number system and mathematical Algebraic 
Group structure. It has predictive abilities and sees prime numbers as 
a distinct class of numbers completely independent of the rest of the 
non-prime numbers. The prime numbers are generated in groups of 
ever-increasing size and use the new definition of prime numbers 
illustrated below. The traditional definition of prime numbers, that 

prime numbers are numbers only divisible by themselves and 1, as well 
as the base 10 number system are hinderances to understanding the 
true nature of prime numbers. 

One last thought will be given before summarizing the Generator 
Function and its vast number of implications. Many will be caught up 
in the one aspect that this may allow solutions to unsolved problems, 
but the most important aspect is that this finally creates a sound 
mathematical structure for prime numbers in a pure mathematical 
sense. Similar previous works of this fundamental nature would be 
Peano’s Postulates, George Cantor’s work defining infinities, or 
Russel’s work on logic. The idea that prime numbers form in groups 
that follow Algebraic Group theory is a fundamental discovery that has 
been missing since the inception of prime numbers. The fact that 
prime numbers have a different definition which leads to these results 
now augments the importance of relative primes. Previously, there were 
primes and non-primes only. The new definition shows the new 
understanding of relative primes (of which the prime numbers are a 
subset), in the generation of true prime numbers. The new structure 
shows the prime number Groups have properties of symmetry, 
reciprocity, closure, completeness and a wave nature that was never 
understood. Also recall that what is presented below is a limited 
summary of major points and the complete definition and 
explanations are found in references. 

CHAPTER 1 
WHAT THE ANCIENT GREEKS KNEW AND WHAT 

THEY DID NOT KNOW AND WHAT EVERY 
MATHEMATICIAN SINCE HAS FAILED TO REALIZE 

This chapter is simple but has tremendous implications for the 
understanding of prime numbers. Please be patient with this discussion 
as it may seem a bit tedious but is essential before going to the visual 
and easier to understand next chapters. First one must understand 
what the ancient Greeks understood and what were the limitations 
regarding the prime numbers. They were able to prove (using 
acceptable modern mathematical proof techniques) that there is an 
infinite number of prime numbers. Once again, mathematicians have 
repeated (many times incorrectly) the original Euclid proof by the 
mathematical techniques of “contradiction” and “induction” proving 
that there is an infinite number of prime numbers.  

A proof by contradiction first assumes (the opposite of what you wish 
to prove) and then you find a contradiction which in fact proves what 
you are trying to prove. The second technique called “induction” is so 
basic to mathematics that it is one of the very first logical steps in 
defining mathematics in what are known as the “Peano Postulates”, the 
basis of all modern mathematics.  

A proof by induction basically states that if you can prove a property 
for one “element” succeeds to a next element by some process or 
operation, then you can prove it for an infinite number of “successor 
elements”. This is one of the most powerful proof tools in all of 
mathematics and one that I used to solve previously unsolved 
problems, using the new tools developed in my studies of prime 
numbers. Thus, you will see that the Greeks understood both the 
proofs by contradiction and induction and used these most 
fundamental of mathematical proofs 2500 years ago. As impressive as 
this may be, neither they nor anyone after them carried this proof to 
its logical conclusions. It was in this that sets my work apart in seeing 
through the many thin veils that have blocked the understanding of 
the prime numbers.  

Clearly the need to understand the prime numbers was fundamental 
from the very beginning of the Greek’s recognition of these somehow 
special numbers. Despite the many comments published by 
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mathematicians that show their complete and utter lack of knowledge 
of prime numbers, there are those today (in light of my achievement of 
directly calculating prime numbers) that claim there is no such thing 
and never was any such thing as the “prime number problem”. Clearly 
the ancient Greeks knew about it and made no mistake about their 
need to understand it. Very simply put … “how do you find future 
prime numbers? ”. Modern mathematicians state it but just as quickly 
refer to non-solutions like the “Riemann Hypothesis” to raise a wall of 
defense as if it could somehow solve the issue (if the illusive Riemann 
Hypothesis were solved).  

Let us be clear, the Riemann Hypothesis can in no way give 
understanding for determining or predicting future prime numbers 
and this is clearly stated in the final pages of the excellent John 
Derbyshire book “Prime Obsession”. The unfortunate side road that 
Mathematical Analysis has taken over the past 150 years can only show 
that the mathematical world had given up long ago to directly 
conquering the “prime number problem”. Now that the solution is 
here through my work and the McCanney Generator Function, it is 
rather odd to see where they now claim there was no such quandary in 
the first place. How ridiculously absurd.  

First, I will detail the proof of the ancient Greeks in its incorrect form 
and then in the correct form, and then show some subtle examples that 
show the Greeks and every mathematician since has failed to extend 
this to its logical conclusions. This is just one aspect of my many 
pronged solutions to directly calculating prime numbers and the 
further visualization of these concepts contained in this subsequent 
book “Principles of Prime Numbers – Volume 1”. The first question 
will arise, why did they Greeks understand the significance of the 
number “1” and why did they stop there? 

The following two paragraphs are taken from the 2007 book “Calculate 
Primes” in the chapter on “The Riemann Hypothesis”.  

Many times, even amongst professional mathematicians I see this 
ancient proof misquoted. I will explain and then proceed with more 
on The Riemann Hypothesis. The Greeks, like modern men, tried to 
calculate the prime numbers by brute force factorization. But since they 
wanted to know where to find more, and if there were in fact anymore, 
they made the basic assumption that there were NOT an infinite 
number of primes. If you multiply all of the prime numbers together 
that you know about, and add 1, then this number would have to be a 
prime number right? Actually, the answer to this is NO, and this is how 
many people incorrectly repeat the proof used by the ancient Greeks. 

The actual proof goes as follows. First assume there is a finite number 
of prime numbers and that you have found them all. Multiply all 
known primes together, then add 1 and we will call this number “A”. 
Either the new number “A” is prime OR you are missing a prime 
number in the list you thought was a complete list of prime numbers, 
and that new prime number is a factor of “A”. By either standard, you 
have found a new prime number, and your original “complete” list 
really was not complete. You can repeat this process forever, proving 
that there is an infinite number of primes. This result is paramount to 
the quest for an equation representing the “density of primes”. 
Without a proof for the uncountable or infinite number of primes, 
there could be no quest for a density equation.  

The above statement hopefully will make sense but now I am going to 
change it a bit to show what no one since the Greeks has done. Imagine 
you follow the incorrect logic of the first paragraph above. The reality 
is that your new number “A + 1” may in fact not be prime even if you 
had discovered all the prime numbers up to a certain point as I will 
explain. Let me give an example. Take the prime numbers 2, 3, 5 and 
11. You are missing 7 from the complete list of prime numbers up to

11. So, like the Greeks multiple your partial list together (2x3x5x11 =
330) but pretend you think you have found all the prime numbers.
Now add “1” to get 331. It in fact is a prime number so you did discover 
a new prime number. But now subtract “1” to get 329. The same
should be true, right? Actually no, you will find that 329 has “7” as a
factor.

But you did “discover” a new prime number that was not in your list. 
It in fact was an essential prime number that you missed right in the 
middle of your list. That number is 329/7 = 47. But as we will find out, 
using this method as we get out into larger and larger numbers, 
numbers found like 47 may in fact not be prime. 

To be clear, the reason you are adding and subtracting “1” here is 
because the only numbers that could have factors (and therefore NOT 
be prime) included in your list would be the base number 330 plus or 
minus 2, 3, 5 or 11. OR any numbers with these as factors. So, you are 
“safe” in adding and subtracting “1” because it could not have 2 or 3 
or 5 or 11 as factors. 330 plus or minus 1 is either itself prime OR it 
has another prime number not in your list as a factor which therefore 
discovers a “new” prime … that is … and here is the part they always 
leave out … “relative to your list of primes”. The term “Relative” comes 
into play and is an essential part of the “McCanney Generator 
Function” defined in the book “Calculate Primes”. It is of utmost 
importance in understanding what mathematicians have missed 
throughout all of these thousands of years.  

But what if in fact you were diligent and had found 7 and included it 
in your original list of “all” discovered prime numbers (you would have 
2, 3, 5, 7 and 11). With this complete list of primes up to 11, there is 
no way you are going to discover any new prime numbers here, or is 
there? Let’s follow the original Greek proof again and see where it leads 
this time but for the partial list 2, 3, 5 and 7. Multiply your list of 
“known” primes (2 x 3 x 5 x 7 = 210). Now add and subtract “1” giving 
211 and 209. 211 is prime but 209 is not. It turns out that 209 has 
factors of 11 and 19. So these factors are “relatively” prime to 210. 
They are not in our list so we in fact have discovered not one but two 
new primes that were not in the original list of 2, 3, 5 and 7. Since our 
original list was complete up to 7 (2, 3, 5 and 7), the factors of 209 
could not be in that list. We found primes outside of the limits of the 
list we knew were “complete” and therefore they are “relative primes”. 
We will find many “relative primes” that are not true primes but which 
create new prime numbers in our process. This subtle issue is one that 
took me some time to break through and understand relative to the 
generation of prime numbers from prior prime numbers.  

Now let us take this to the logical conclusion. This is the heart of the 
McCanney Generator Function. Take a complete list of prime 
numbers up to a given point (up to the nth prime number), multiply 
these together and we will call this number the “nth magic number” and 
we will write it as Sppn (the mathematical term is the “nth sequential 
prime product”). The only numbers that can be prime “relative” to 
this number are Sppn + 1, Sppn – 1 (for the same logical reasons as 
given above) and also Sppn + all relative primes and Sppn – all relative 
primes (relative primes with respect to Sppn). 

When this process is begun starting at just the number “0”, you 
generate using only addition and subtraction all the relative prime 
numbers in groups. You then use a “boundary condition” rule that 
states that all numbers discovered by this process less than pn

2 (where 
pn is the nth prime number) will be prime (there is a mathematical 
theorem and proof of this in the Calculate Primes book). The result is 
the Generator Function which directly calculates prime numbers in 
groups. You begin with the number “0”. Applying the Generator 
Function gives the first “set” of prime numbers. With this you calculate 
the next magic number because you have discovered more prime 
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numbers in sequence (without missing any … the property of 
Completeness). This set of prime numbers is then inserted into the 
Generator Function to create the second group of prime numbers. This 
process continues with each successive group having more prime 
numbers than the previous group. At first this seems like a relatively 
minor function until you realize that the groups become larger and 
larger very quickly. Within a few iterations of the generator function 
you will be generating prime numbers that if the digits were placed in 
one-centimeter cubes, the number would stretch from earth to the sun. 
The issue with just looking at the Generator Function is that it is an 
equation and most people (even mathematicians) need to visualize the 
meaning. This is where the Sppn and Rppn tables come in to use. One 
might imagine that these tables would be quite simple but in fact they 
have properties that are extremely complex. The prime numbers of 
themselves form a mathematical system that is very ordered. This is a 
totally unexpected result of the Calculate Primes process, and this book 
gives the visualization of that process.  

In the process we will find many “false primes” but here again is one 
of the thin veils that no one saw through if they even ventured near 
this (as did the great F. Gauss but even he did not see the solution). 
The false primes are needed to generate the real primes if they are 
“relatively prime” to the current group of numbers being worked on. 
There are many more subtle aspects to the Generator Function which 
lead to the conclusion that the 1) prime numbers are a mathematical 
number system unto themselves, 2) they are symmetrical around the 
“magic numbers” and there are many other symmetries, 3) this 
mathematical system has the properties of Closure (the number sets 
are a closed Group … each set of relative primes in Sppn is a closed 
system), Reciprocity (the operation works in the forward and reverse 
directions), Symmetry (as already noted), 4 you are discovering all 
prime numbers so the discovery has Completeness, 5) the solutions 
form standing wave patterns that extend to infinity that predict all 
future prime numbers and 6) creates a new number system called 
“Nature’s Number System” that is based on the prime numbers and 
identifies numbers and their properties in the number itself. The prime 
numbers occur in infinitely many wave patterns that repeat to infinity 
and which “beat” against each other to create the patterns we observe. 
It relates primes to the world of “relative primes”. This creates a new 
understanding of prime numbers in counting. The prime numbers 
form “waves” that extend to infinity predicting all the prime numbers 
that will ever be discovered using simple formulae. The major aspect is 
that the current book shows the visualization of the prime numbers 
with all of these properties and many more. Most people cannot 
visualize using equations so a new system of “tables” is presented so 
anyone can see these properties visually [2]. 

At this point I am going to make a brief segue specifically for 
professional mathematicians, but all readers should note this also. 
Fishermen have learned that to catch big fish you need what is known 
as a “stinger hook” as big fish have learned that you do not swallow the 
entire bait (in case it is bait and not regular wild food). The stinger 
hook is a small hook that is difficult to see and feel and a way for the 
fisherman to catch a wary big fish. So here is my “stinger hook” to keep 
the interest of professional mathematicians to read until the end of this 
book, hopefully catching their attention … hook, line and sinker. 

Of the many new theorems and corollaries proven in this book, the 
following are the most unusual. Stinger hook #1) The highest local 
values of Goldbach pairs (the number of prime pairs that add to equal 
an even number N), occur at locations Sppn because of the symmetry 
of prime numbers around the value of ½ Sppn, while the minimum 
local values are related to the Maximal Gaps and/or large gaps that 
occur just beyond the sequential prime product values. For the 
following unusual result proven later in this book, one needs to have a 
good background in the work of George Cantor dealing with infinities. 

Stinger hook #2) Not only is the Twin Prime Conjecture proven, but 
additionally, every Twin Prime Pair generates an infinite number of 
future Twin Prime Pairs. For good measure Stinger hook #3) The 
application of the Generator Function proves that the density of 
primes is a strictly monotonically decreasing function as there is a limit 
put on the size of gaps (there are no rogue prime gaps that would cause 
the Goldbach conjecture to be false). Now if there are still any 
mathematicians uncertain about continuing, here is Stinger hook #4). 
Just as every integer has a unique set of prime factors (The 
Fundamental Theorem of Arithmetic), every prime number is 
generated by a unique previous “ancestral” prime number and has a 
unique ancestry of unique prime numbers leading back to the alpha 
prime number 0. 

This last segue was necessary because at this point the next topic deals 
with the numbers 0 and 1 being prime numbers under the new 
definition of primes. In building the prime numbers using the 
Generator Function, the number 0 is called the “alpha” prime or the 
mother of all primes. All prime numbers have ancestries that lead 
uniquely back to “0”. This is where many “traditional mathematicians” 
would slam this book shut in anger believing that this issue has been 
settled. Remember that we are working with a new definition of prime 
numbers that has as a subset the traditional definition of primes. The 
old definition will become obsolete as the new definition and the tools 
it brings with it are understood. It is in a sense that Tensor analysis and 
General Relativity did for Newtonian Mechanics. It did not disprove 
or nullify Newtonian Mechanics; it added another layer on top of it. 

The new view of prime numbers allows one to look at the prime 
numbers in small groups and then generate the next group using 
standardized formulae. This allows one to structure proofs and 
equations that predict prime number behavior and thus allows proofs 
by induction. These are the tools that have been missing and this gives 
a firm understanding of the prime numbers and without considering 
any other numbers except the primes. They are now a number system 
all to themselves. Abstract Algebra, commonly used properties of 
Group Theory and other forms of analysis, can be applied to these 
small groups of primes. These generate patterns in the prime numbers 
never imagined before. These were described in the original text 
“Calculate Primes” but it appears that no one noticed this. These 
properties are expanded upon in this book with visuals so everyone will 
be able to readily see the results.  

An additional issue is that with the new definition of prime numbers 
(all numbers generated by the Generator Function) we now 
conclusively include 0 and 1 as prime numbers. This provides the 
connection between positive and negative prime numbers and leads to 
the use of prime numbers as the basis for a more complete set of prime 
numbers in the form of complex prime numbers of the form pi + ipj 
where i = √-1 (the square root of negative 1). Without 0 and 1 as 
essential pieces of the prime number set, the advancement to more 
complex number systems would not be possible (see the final chapter 
of the book “Calculate Primes” for further discussion of this topic). Of 
course, this was never an issue before since no one considered the 
prime numbers to be a closed number system. The issue is not to argue 
based on the standard definition of prime numbers; the issue is to 

understand that the standard definition is not complete. 

It will be discovered also that the wave patterns of the prime numbers 
propagate both in the positive and negative directions (with symmetry) 
and cross from positive to negative numbers with 0, 1 and -1 being 
included in the patterns. The traditional arguments over whether 1 
should be included as a prime number comes from the incompleteness 
of the standard definition of prime numbers. The new definition of 
prime numbers using the Generator Function begins with 0 and 1 and 



McCanney

6 J Pure Appl Math Vol 8 No 3 May 2024 

furthermore branches to negative numbers and then to complex 
numbers.  

The standard reasons for 1 not being a prime are as follows and then I 
will comment on their viability. The first objection is that 1 is a simple 
factorization where 1 has factors of itself and 1. That in fact fits exactly 
the standard definition of a prime number. Per the Greek definition, 
it fits in exactly one row and one column and cannot be rebuilt in any 
other form. Therefore, it should be classified as a prime. The second 
and more often used argument against 1 being a prime is that if used 
in factoring would not comply with the Fundamental Theorem of 
Arithmetic. For example 12 factored could = 1 x 2 x 2 x 3 or could 
equal 1 x 1 x 2 x 2 x 3 OR could also equal this string of prime factors 
with any number of 1s. BUT my answer is that 1 x 1 x 1 x 1 = 1 and 
therefore no matter how many times you care to write 1 in the product, 
all the 1s can be written as just a single 1 and therefore this should not 
create a problem.  

The inclusion of 0 as a prime will have many mathematicians ready to 
slam this book closed and begin to rant down the halls outside of their 
offices. Before you do, remember that this is a mathematical model of 
which the traditional definition of prime numbers is a limited subset. 
The benefit of including 0 as a prime as the “alpha” prime or “mother 
of all primes” will become clear in the application of the Generator 
Function. The necessity to include it as the “glue” between the negative 
and positive prime numbers and the center point for the complex 
primes is another valid reason.  

More importantly in the pure mathematical sense, 0 is the beginning 
number as you will see the prime numbers are literally generated from 
the Peano Postulates, with 0 being the first element. This should give 
mathematicians pause to admit that the benefits of all of these reasons 
at long last gives the prime numbers their rightful place in 
mathematics. Not only are prime numbers the building blocks of 
products (the factors of all numbers), but they in fact are the building 
blocks of the prime numbers themselves. All prime numbers are 
generated from prior prime numbers starting at 0 and using only the 
operations of addition and subtraction. This topic is also covered in 
the last page of the book “Calculate Primes” and is restated later in this 
book. The generation of prime numbers starting from Peano´s 
Postulates should stand as a landmark achievement.  

The greatest achievement of this work is the fact that the prime 
numbers generate other prime numbers using simple addition and 
subtraction and therefore are determined beginning with the prime 
number “0”. Prime numbers are no longer seen as numbers that only 
have themselves and 1 as factors, they are now defined as the numbers 
uniquely determined directly by simple addition and subtraction of 
already discovered prime numbers to and from the magic numbers 
which are themselves the products of sequences of prime numbers. The 
following is one of the proofs found in this book. 

The fundamental theorem of prime numbers: Every prime number 
has a unique set of ancestral prime numbers going back to the 
number “0” the alpha prime or mother of all primes 
As an example, the number 41 has as its unique parent 11 (the 
sequential prime product 30 plus 11). 11 has as its unique parent 5 
(the sequential prime product 6 plus 5). The number 5 has as its unique 
parent 1 (plus the sequential prime product 2 x 2 = 4 second row). And 
finally, the number 1 has as its unique parent 0 (the “alpha prime” or 
mother of all primes plus 1). All prime numbers have such an ancestry 
and it is unique when following the rules of the Generator Function. 
You will see that some of the ancestral primes may be relative primes 
(relative to the Sppn value where they were generated). Relative primes 
have as much value as real primes in certain applications. One can also 
talk about “brothers” or “sisters” in that 37 (the sequential prime 

product 30 + 7) is a sister prime to 41 (the sequential prime product 
30 + 11) since they are generated in the same group related to the 
sequential prime product 30. Likewise, one can discuss symmetries like 
19 and 41 being symmetrical around the sequential prime product 30. 

Where 30 - 11 = 19 & 30 + 11 = 41. 

There is another set of symmetries that fall around the value of ½ Sppn. 
For example, all the primes in the Sppn = 30 group add to equal 30. 1 
+ 29, 7 + 23, 11 + 19, 13 + 17 are called “complement primes” since
their sum is 30 plus, they are all symmetrical around the value of ½
Sppn = 15. But you might add that 5 + 25 is missing since 25 is not
prime. This is part of the prime discovery process in that that 5 and 25
are not included because 5 is a factor of 30. And finally, one can write 
an equation for all future primes based on the “wave” function
discovered for Sppn = 30 as follows (all future primes will have this form 
… note not all of these will be prime but all true primes will be of this
form): 

 = n 30 ± (1, 7, 11, 13, 17, 19, 23, 29) where n = - ∞ … -3, -2, -1, 0, 1, 2, 
3 … + ∞  

In this book we call this a “comb” to represent a series of select 
numbers in a sequence. A simple and partial form of this type of 
equation usually quoted by mathematicians noted is 6n ± 1. However, 
as you will see later in this book, this formula is a partial solution for 
the Sequential Prime Product 6. The equation for Sppn = 30 will 
produce fewer predicted values that the equation for Sppn = 6. The 
equation for Sppn = 210 will produce fewer predicted values than the 
equation for Sppn = 30 and so on. We will be able to write a similar set 
of equations for each subsequent value of Sppn which will be a subset 
of values of the prior Sppn equation, that is, every subsequent set of 
equations will further limit the predictive “comb” of the prior 
equation. This is the essence of the proof of the theorem discussed later 
that “the density of primes is a strictly monotonically decreasing 
function” since the equation for any sequential prime product contains 
fewer potential prime numbers than the prior sequential prime 
equation (for the previous sequential prime product). Now also note 
that as these tables grow, not all of the numbers in the “equation” will 
be true prime numbers, they will also include “relatively prime 
numbers” relative to the Sppn value. The Generator Function 
boundary condition rules deal with this issue in a natural way since the 
relative primes are needed to generate future real prime numbers and 
when their usefulness has ended, they are eliminated by the selection 
rules (much like selection rules in nuclear and atomic quantum 
mechanics).  

One last point is given. Since every prime number has a unique 
ancestry, then so does every twin prime pair. For example, the twin 
prime pair (41, 43) each prime 41 and 43 has a unique ancestry of but 
more importantly, the twin prime has an ancestry that goes back the 
the mother of all twin prime pairs. This twin prime pair in turn will 
generate an infinite number of future twin prime pairs using the 
Generator Function. These tools allow us to prove previously unsolved 
problems AND to easily understand why they are true. This will be the 
basis for the proof of the outstanding problem The Twin Prime 
Conjecture.  

Besides twin primes (which are primes of “gap 2”) this same process 
proceeds to all prime numbers and all gap sizes. This book develops 
not only the equations to predict the number of twin primes in future 
tables, but also can predict the prime pairs of all gap sizes showing that 
all gaps are “conserved”. There is a “Law of Conservation of Gaps” 
theorem that is a core new discovery that shows that once a particular 
gap size is formed in the structure of the prime numbers, this gap will 
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then continue to be generated to infinity just as are the primes. We will 
develop graphs of these.  

Before starting the serious rigorous part of this book, I will also give a 
preview of the new number system which again has escaped everyone 
who have been fixated with the base 10 or other modulo number 
systems. The new number system which in this book is called “Nature’s 
Number System” (because it is a natural extension of the prime 
numbers) is structured as follows. First look at the commonly used 
modulo 10 or base 10 number system. The first digit represents “1’s”. 
The second digit represents “10’s”. The third digit represents “100’s” 
and so on. Each successive digit is another multiple of 10, thus the 
name “modulo 10”. One could write this to remind us as 1000, 
100,10,1 to note the value of each digit and typically putting a comma 
between every 3 digits to make them easier to read. We can define 
number systems with modulo “8” (hex numbers), “2” (the binary 
system) or even modulo “29” if we want. The great mathematician F. 
Gauss used these to try to understand prime numbers but never got 
past that point. The problem is that by the time you get to somewhere 
between 10 and 100, the prime numbers are lost in the maze. The 
prime numbers in all of the “modulo” systems of numbers are simply 
the numbers left out of the standard multiplication table. We 
memorize as children the common multiplication table for modulo 10 
but we could just as easily learn the multiplication table for modulo 29 
or any other base number system. The best thing you can say about any 
modulo 10 number is that if it ends in either 2 or 5 or 0 it is not prime. 
Now imagine a number system in which the successive digits are 
represented by the sequential prime product (or magic) numbers Sppn. 
The digits would go as follows 510510, 30030, 2310, 210, 30, 6, 2, 1 
where each successive number to the left is the next value of Sppn. 

To find these numbers multiply the prime numbers 2 x 3 = 6, 2 x 3 x 
5 = 30, 2 x 3 x 5 x 7 = 210 and so on (all the way to infinity). That is 
the only hint I will give at this point but this number system has 
amazing properties not the least of which is that it is structured on the 
prime numbers. Some amazing properties of these numbers will 
become apparent when we begin building the visual tables of Sppn and 
see how the numbers line up when compared to the modulo 10 
numbers. We will also learn that once you get the “patterns” you will 
not have to use numbers at all but will build the properties of the prime 
numbers without using numbers per se. When you think about it, that 
is how the ancient Greeks started all of this by representing numbers 
in rows and columns, however that spiraled into the view of primes as 
numbers mixed into a sequence of all numbers. We will see in the 
tables that we will be dealing only with prime numbers, not all the “un-
prime” numbers. This will greatly reduce the problem of dealing with 
large groups of numbers.  

At this point we have seen just the very beginning of the properties of 
these tables which I guarantee you will stretch even seasoned 
mathematicians to grasp. But the journey will be worth the effort since 
these are the tools that have been missing since prime numbers were 
first noticed by the ancient Greeks.  

It is further very interesting to note all the relationships between prime 
numbers in the many examples given in the book “Calculate Primes” 
showing how families of prime numbers are related to other families 
of prime numbers, since prime numbers are generated in groups (not 
one at a time). This is a topic that could take chapters but is best 
understood visually. A simple example is that when you start at any 
magic number subtracting the current set of relative primes (generated 
by a prior iteration of the Generator Function) from that magic 
number, it identifies the exact same set of numbers as are discovered 
by adding relative primes from any prior magic number and its relative 
prime group. That is, the wave patterns propagating in the positive 
direction match exactly the wave patterns or primes propagating in the 

negative direction NO MATTER WHERE YOU START. 
Additionally, if you continue the “wave” far into the negative numbers 
you similarly identify the negative prime numbers which exactly reflect 
all the properties of the positive prime numbers (we are not dealing 
with negative or complex prime numbers in Volume I of this book). 
The complexities of these patterns are more than amazing to see, 
especially in a group of numbers that were previously stated to have no 
patterns at all and were at most stated to be “random” or at best 
“pseudo-random” (meaning that they seem to be not random 
sometimes but in fact are random … this is the mathematical equivalent 
of the weather man stating that it may be rainy or may be sunny today). 
The prime numbers are not random and contain an infinite number 
of complex patterns. These will become obvious in the visualization 
tables in the following chapters.  

By now you should have a better idea of what the ancient Greeks knew 
and what they did not know, and additionally, what standard 
mathematics did not recognize … and with these few initial brief 
samples … what my years of private studies are now revealing.  

CHAPTER 2  
CREATING Sppn TABLES 

This chapter sets the stage for very complex yet subtle properties of 
prime numbers. Previous efforts over the past 2500 years have used 
number systems that did not accommodate the prime numbers, in fact 
as you will see, they created a hindrance to understanding. Just as 
Roman Numerals were found to have inherent limitations, so to 
modern number systems have serious limitations. Along with the visual 
tables is the topic of “Nature’s Number System” defined in this book 
which brings an entirely new light about prime numbers. The following 
is an example (Figure 1 - next page) of a completed primes only (red 
column only) table (for n = 5, using mod10 numbers) that we will be 
building and developing. Do not spend too much time on this we will 
develop all this in short order. 

But first, the following is copied from the original Calculate Primes 
text defining the “Generator Function”. It presents the mathematical 
expression outlined above in a simple format. It has one single 
boundary condition that defines prime numbers to be all numbers less 
than pn

2 after each application of the Generator Function.  There are 
no complicated rules. The process starts with the number 0 and the 
equation is applied which generates the second number 1 (as defined 
in Peano’s Postulates).  It is the operator that generates the first step of 
the process of Induction. These numbers are the first “groups” of prime 
numbers. These are then operated on by the Generator Function to 
create the next “group” and the process continues. As a numerical and 
physical representation, we will develop Nature’s Number System 
based solely on prime numbers and the Sppn Tables which contain only 
prime numbers developed by the Generator Function defined below.   
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See the Figure 1 below for an example of a well developed Sppn table 
for n = 5. As with the Generator Function, each successive table is 
constructed from the prior table.  

Figure 1) n = 5 with Spp5 = 2310 Table - 48 co lumns and 11 rows. 

Above is the “red column” table for n = 5, Pn = 11, Sppn = 2310 and 
Sppn-1 = 210. This table contains all the relative primes (true primes 
and non- prime numbers that are relatively prime with respect to 2310) 
with the white cells removed (all multiples of pn = 11 are the white 
cells). We are using mod10 numbers in the cell since you are familiar 
with base 10 numbers. All prime numbers less than 2310 are contained 
in this table (they are the red cells). How did they get there? This table 
was generated from the prior table Sppn-1 = 210. Row 1 of this table was 
constructed by linking all the rows of the prior table Sppn-1 in sequence. 
Then every cell in rows 2 to pn is constructed by simply adding 
multiples of Sppn-1 (210, 420, 630, … , 2100) to the parent or top cell 
value. This is the visualization of the McCanney Generator Function 
found in the first book of this series “Calculate Primes”.  

You will notice that there is one and only one white cell in every 
column. All the other numbers less than 2310 that are not relatively 
prime to 2310 are not in this table. Remember that only the prime 
numbers are used to create future prime numbers. This is the 
visualization of the direct calculation of prime numbers from the 
Calculate Primes book. To create the next table, all cells except the 
white cells are placed in sequence to create row 1 of the next table 
Sppn+1 = 30300 (the next sequential prime product after 2310). You 
should now take a quick look at the file accompanying this release 
entitled “Appendix - Parameters for Tables Sppn and Rppn ”. This 
Appendix defines a list of parameters relative to Volume I of this 3 
volume set. As you will see there are many dozens of mathematical 
parameters defined which describe the attributes of the tables. There 
are similar lists for Volumes II and III. Also note that there are much 
better resolution photos in the accompanying files that go with this text 
so the above table is available in higher resolution … some of the tables 
have a significant amount of detail that cannot be duplicated within 
this text. 

Look again at the table above. Notice that in row 1 there is a symmetry 
around the ½ point (marked ½ Sppn-1 above the center of the table). 

All values in row 1 to the right are the same distance from the 
equivalent value to the left of this ½ point. The colored arcs above the 
columns represent gaps (differences between the prime numbers) and 
these also are symmetrical around this ½ point of row 1 (a gap to the 
left is found equidistant to the right of the ½ point).  

When you then add the multiples of 210 to these cells to get the values 
in the cells below each parent top cell, this symmetry is preserved and 
therefore is transmitted to the next table. Symmetry is preserved from 
one table to the next to infinity. Looking into the table notice the 
center point of the table marked with a green dot (surrounded with 
yellow) with value 1155 (not listed in the table because it is not a 
relative prime number). Now pick any cell in the table and find its 
“complement” (the value symmetrically on the other side of the center 
point). A few points are marked (0583, 1727) and (1133, 1177). Every 
cell has a “complement” cell and these are located symmetrically 
around the ½ center point of the table. This should be true because 
this symmetry is a result of the table being constructed from a 
symmetrical row 1, which was Sppn-1 = 210. All red cells in this table 
have complement cells. This creates an organization of prime pairs that 
add to equal a single number (Sppn). There is a bit of work to 
understand the following point fully, but this why in looking at the 
Goldbach prime pairs (pairs of primes that add to equal even integers), 
the local maximum values are always either sequential prime products 
OR multiples of sequential prime products. That is why I chose as one 
of my “stinger hook” points in the beginning of this text (to hold the 
professional mathematician’s attention) until these points could be 
made. This is also relevant to the overall proof of the Goldbach 
Conjecture later in the next text. The tables which are visualizations of 
the Generator Function provide the tools for new understanding of 
the structure of prime numbers and unsolved problems. Many more 
examples are yet to come. There are dozens of other relationships 
hidden in these tables. Just a few examples are listed at this time.  

Look at the values of the cells of the table. Notice the location of twin 
prime pairs (marked with red arcs above their locations). Now go down 
the columns below these parent cells. All the cells below are also twin 
prime pairs. We are generating twin prime pairs from parent twin 
prime pairs. Locate the top column cells 1 and 209. These also form 
twin primes (209, 211), (419, 421), etc. These are also generating twin 
prime pairs. You will find all the red cells (true twin prime pairs) in 
these columns that were generated in this table by applying the 
Generator Function. There are many more twin primes in table Sppn 
= 2310 than found in the prior table Sppn-1 = 210 which in turn had 
more twin primes than the prior table Sppn-2 = 30. Future tables will all 
have more true twin prime pairs than the prior table. The 
generalization of this will be the basis for the proof of The Twin Prime 
Conjecture using Induction. This was an underlying effort in my 
studies to create a structure for the prime numbers that would allow 
Induction Proofs. An additional mathematical concept founded by 
mathematician George Cantor will also come into play where there will 
be many levels of infinity in the propagation of primes, twin primes, 
prime gaps, etc.  

One additional structure is the formation of mathematical Groups 
based on the Sppn tables. A closed Group is a mathematical system that 
uses a single operation for which all operations on the elements of the 
Group wrap back into the members of the Group. The tables 
constitute a closed Group based on the relative prime numbers. This 
will be discussed in detail later in the text and further mathematical 
structures are presented in Volumes II and III of this set of books 
including negative and complex prime numbers. Additionally classes 
of prime numbers such as Mersenne primes (numbers that are prime 
of the form 2n – 1 where n = 1, 2, 3, … , ∞ ). One can see that this is a 
subset of the many equations that arrive naturally from the tables as 



Principles of prime numbers 

J Pure Appl Math Vol 8 No 1 January 2024 9 

discussed previously. The tables provide a far better set of equations for 
the identification of potential prime numbers. A later Appendix will 
discuss the dozens of specialty prime groups relative to the tables.  

Throughout the history of mathematics, there have been many 
formulae and visual attempts at finding patterns in the prime numbers 
and all have failed for one very simple reason. They only saw part of 
the more complex system of relationships. The self generating Sppn 
tables are the best representation of prime numbers. But first I want to 
recount how the “Sppn  Table” concept came to me.  

Many times during my education and professional life in physics and 
mathematics, I would become tired at the end of a long day and slip 
off to sleep. During the night on many occasions, my mind would 
continue to work and, in the morning, I would awake with the full 
solution including images and drawings in my head.  

Creating the tables that are the true basis for the prime numbers is a 
simple application of the McCanney Generator Function described in 
“Calculate Primes”. One of the natural extensions of the Generator 
Function is that all multiples of the “magic numbers” have amazing 
properties relative to the prime numbers, as you will now be able to see 
and visualize. The idea for the tables came to me as I sat on an airliner 
on a long flight dozing off and falling into a deep sleep. As has 
happened many times in my life, my subconscious mind was busy 
working on the math problem that had occupied my mind for decades. 
As I awoke, I grabbed onto the solution that I conceived in my dream 
and started writing before the dream escaped the transition to my 
conscious mind. The tables were born in my subconscious mind. After 
working with the tables over past years, I have come to realize that they 
unlocked many of the secrets of the prime numbers. The tables provide 
a new tool with which to view the prime numbers and analyze them in 
small orderly groups. At first, they will seem simple and in fact, creating 
the tables is quite simple. They are very orderly and one table naturally 
generates the next table. What is not so simple is what happens once 
you begin to unlock the secrets of the prime numbers. Every day I 
discover new hidden properties of the prime numbers based on the 
tables. It is like having the Bohr model of the atom for the first time or 
the Schrödinger Equation. These are tools that have predictive values.  

The tables are first created from the prior table. Then a series of 
operations are performed on the table which will produce dozens of 
parameters which tell us the progression of these parameters from all 
prior tables. Next we develop equations that generalize the 
development of tables from one table to the next and into the future. 
With these equations and relationships we develop the understanding 
necessary to create proofs by Induction that will prove previously 
unsolvable problems relative to the prime numbers. This is based on 
direct calculation of the primes not statistical Mathematical Analysis. 
We derive exact solutions not statistical solutions.  

Essentially the prime numbers constitute a complete set of numbers 
unto themselves. They are not the errant left over numbers from a 
multiplication table. They are not the numbers that remain after a sieve 
is applied. And for sure they are not the numbers found by brute force 
calculations of super computers. These are all standard methods of 
locating a few prime numbers, but they give no understanding of the 
prime numbers at all. These methods of locating primes have 
convinced mathematicians that the prime numbers are random or at 
best pseudorandom but give no idea of relationships between the 
primes and certainly give no degree of knowledge of how to directly 
find or predict locations of primes (other than in vague generalized 
probabilistic equations that make General Relativity look like grade 
school math).  

The Sppn (Sequential Prime Product using counting integer “n”) and 
Rppn Tables bring the McCanney Generator Function to life and you 
will begin to visualize the power in its application. The current state of 
the math world would be like seeing the physics equations for a pulley 
system but without imaging a pulley system in a diagram. It is the 
relationship between the physical and mathematics that makes physics 
the science that it is. It would be like trying to describe a small single 
cell animal without powerful lenses of a microscope. So too it is with 
the prime numbers. Now you will have the physical visual descriptions 
of the prime numbers and will be able to view them with all their 
associated prime numbers without the cumbersome presence of all the 
other numbers. You will be viewing just the prime numbers as they 
were meant to be viewed but were never able to before because the 
tools to view them were never present. The number systems we were 
using could not open the door (Figure 2).  

Figure 2) Shows the first few Sppn Tables that are generated from using 
the Generator Function as defined in the “Calculate Primes” book. 

You can see how one table is created from the prior table. This was one 
of my main goals as this then builds the structure for proofs by 
“induction”. If you can prove a property for one table for the prime 
numbers, then show how the next table is mathematically generated 
from the prior table with this property transferred to the new table, 
then you have created the scenario that will allow you to prove this 
property for the next table and therefore all tables to infinity. This is 
the basis of mathematical proof by induction which was first conceived 
of by the ancient Greeks, and later solidified into modern mathematics 
in its most basic form in what are known as the Peano Postulates. 

In the tables observe that they begin with the alpha prime “0”. The 
table is a single “cell”. Observe how the basic table parameters progress 
from one table to the next and how the prime numbers occur in 
columns. Observe how there are some numbers eventually in the red 
columns that are not prime. We will show how the Generator Function 
operates visually within the table. Eventually there will be literally many 
dozens if not hundreds of properties and parameters associated with 
these tables that will allow us to build equations generating a future 
table from a prior table. This is just the basic beginning. The tables use 
the familiar modulo 10 number system to get the idea of the tables. We 
will translate these to use the Nature’s Number System and that is 
where you will begin to see the inherent power of these systems 
working together. 

Soon after understanding the construction of the tables using standard 
base 10 numbers, we will convert to the new “Nature’s Number 
System” and you will see the amazing transformation of understanding.  

To help put this into perspective we will take certain pieces from the 
chapter that defines the new “Nature’s Number System”.  
In mathematics we have the following number systems that build one 
on the previous system. (the symbol ∞ means “to infinity”) 
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Roman Numerals using a complex system of I, X, L etc. were useless in 
commerce 

Natural Numbers (1,2,3,4, … ∞) Uses the symbol “N” 

Integers (-∞, … -4,-3,-2,-1,0,1,2,3,4…∞) Uses the symbol “I” 

Rational Numbers = I1/I2 divide any integer by any other (cannot 
divide by 0) 

Real Numbers = any number in the form xxxx.yyyy where x and y are 
digits 0 to 9 

Complex Numbers = a + bi where “a” and “b” = real numbers & “i” = 
√-1 = (-1)1/2 

Other forms of number systems are Matrices, Vectors, Tensors, etc.  
Algegras (define special groups of numbers or symbols having common 
properties). 

Group Theory is a special form of mathematical structure will apply to 
prime numbers 

There is a basic assumption in all of the above number systems that 
base 10 number system is universal and has no limitations. Some 
mathematicians tried to resolve certain limitations but never quite 
made it across the thin veil that separated them from the native 
number system of the prime numbers that I call “Nature’s Number 
System”. That assumption was that the way we represent the numbers 
was not important. Mathematicians have become diverted trying to 
determine if when observing prime numbers in modulo 10 if there 
might be a preference for primes to end in a particular digit or other. 
This is a non-question since the result would be different in every 
different number system of different modulo. This has nothing to do 
with the order or structure of the prime numbers but would be no 
more than a quirk of the number system. Furthermore, since this could 
all change with increasing prime numbers (and since computers can 
only calculate to limited ranges of prime numbers) we could never 
come to a definitive conclusion about this topic. It is something that 
literally could never be resolved. As it turns out in the “Nature´s 
Number System” all prime numbers will end with the same digit.  

Throughout history, number systems have been assumed to be 
equivalent although we forget about the major step from Roman 
Numerals to Arabic numbers and base 10 which allow for ease of 
adding, subtracting, multiplying, dividing and doing all sorts of other 
higher levels of math. We typically use the modulo 10 numbers which 
repeat in powers of 10. 10, 100, 1000, 10000 etc. All of the great 
mathematical developments have been based on this number system 
including the specification of constants like “π” or “e”. But the modulo 
10 system is inherently faulty when it comes to understanding prime 
numbers. Let us imagine that we had been limited to using Roman 
Numerals … where would mathematics be today? Imagine trying some 
standard math operations with Roman Numerals. For example, there 
is a system of “logarithms” that defines a relation between any real 
number and “10” the “base”. That relation is written as 10log x = x . 

Every real number x has an associated “log10”. We can define these in 
terms of any other “base” but 10 is the most commonly used “base”. 
There is a natural base of logs known as “natural logs” and written as 
ln x based not on the base 10 but on base “e” with e = 
2.718281828459… 

This is known as “Euler’s number” after the mathematician Euler. So 
eln x = x relates every real number x with its “Natural Logarithm” ln x. 

One of the most famous math “identities” is eiπ = -1 which again 
assumes base 10 in the minds of most mathematicians. 

In working with the Generator Function a new number system came 
forward that was new to mathematics and allowed for very easy use of 
prime numbers as the basis of all numbers (their rightful place in 
mathematics). Within this new numbers system, the prime numbers 
are NOT the errant numbers left out of the multiplication table and 
are NOT the numbers left after removing other numbers in a sieve and 
lastly, are NOT just numbers with 1 and themselves as factors (only to 
be found by brute force super computer calculations). Nature’s 
Number System (notation is modNt) is based on the prime numbers. 
We can now determine prime numbers in the distant future based on 
this number system and more importantly tell many properties of a 
number just by looking at it, unlike base 10 (mod10) numbers which 
according to one mathematician when commenting on the prime 
numbers, “they appear to be no more than so many random lottery 
numbers”.  

Nature’s Number System is based on increasingly large growth of prime 
numbers and their associated magic numbers instead of powers of 10 
or some other artificially created modulo. The sequence is as follows: 
the first digit is 0 or 1 (base 2 or modulo 2 or mod 2) … the next digit 
is based on modulo 6 (mod 6) … the next digit is based on base 30 … 
the next digit is based on base 210 and so on. 1, 2, 6, 30, 210, 2310 
and so on are successive Sequential Prime products. Each successive 
“digit” represents the next value of Sppn (the product of all prime 
numbers up to the nth prime) and so on to infinity. The power of this 
number system will become obvious with use. But its initial major 
achievement is that it is based on the prime numbers, not the number 
of fingers and toes we have. Within this number system the primes 
grow and are determined without the need of the rest of the numbers. 
Another property of the Generator Function is that it discovers prime 
numbers in groups staring with the alpha prime 0. It is a recursive 
process by which new prime numbers are discovered which are then 
fed into creating the next sequential prime product along with its newly 
discovered larger set of prime numbers. It is a system that naturally 
grows without any other input or help. It is a self generating process.  

That is why I have called it “Nature’s Number System”. It is the number 
system that would also be discovered on the far side of the universe 
although they may use different symbols than ours. We will find that 
in dealing with the prime numbers, eventually we will no longer even 
write the numbers as they will simply become place holders in the table 
patterns and we will only write the major “mile marker” numbers to 
indicate locations in the tables. It is interesting to note that the famed 
mathematician F. Gauss worked with various modulo systems to try to 
interpret the prime numbers but failed to see through this thin veil. 
He noticed that base 10 numbers made it easy to recognize multiples 
of 2 and 5 (both prime numbers) but left us clueless regarding large 
numbers with any other primes as a factors. Gauss explored other 
modulo based number systems but never cracked the code of “Nature’s 
Number System” which uses all of the prime numbers as a base. I often 
joke that if aliens ever do discover our society, they will find it 
humorous that our number system is based on the number of toes we 
have and that it took 2500 years to discover the true nature of numbers.  

In the new number system, multiplication is replaced by a new process 
and factorization is also replaced by a new process. With this in mind, 
begin to create the additional tables in the above photo, using the 
Generator Function and the simple rules noted in the photo to build 
each table from the prior table. This is the baby step that will eventually 
bring this to the level where seasoned mathematicians will have a 
difficult time following all the properties that arise from these 
seemingly simple tables. We will also see that the numbers 0 and 1 are 
prime numbers and we will find that there is an equivalent group of 
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negative and complex prime numbers. The numbers 0 and 1 are 
intermediate primes between the positive and negative prime numbers. 
Also note that the process begins slowly but within a few iterations of 
applying the Generator Function we will soon be generating millions 
and trillions of prime numbers within successive iterations of applying 
the Generator Function. To be very clear however, the goal is not to 
generate huge tables of prime numbers (although that is easily done), 
the goal is to bring understanding to the prime numbers as they extend 
to infinity. Managing large numbers and their relationships to smaller 
numbers is the goal that will finally make the prime numbers 
manageable to infinity. The ability to create subsequent tables “n + 1” 
from the prior table “n” gives the power of understanding previously 
missing from the mathematical tool box. This is the fundamental 
building block of proofs by induction. As I was building this 
mathematical structure I always had as my goal the use of building 
blocks that would facilitate proofs by induction.  

One last point regarding Nature’s Number System is that in the first 
few iterations it grows at less than the modulo 10 number system (it 
takes more digits to express a given number than with modulo 10 for 
small numbers). But after n= 5 for Spp5 = 2310 & p5 = 11, Nature’s 
Number System begins to pull ahead and eventually will grow by 
staggering amounts for each progressive value of “n”. It very soon will 
use far fewer digits to specify a given number than the modulo 10 
representation and these digits also will have meaning relative to the 
number. Unlike the base 10 number system in which large numbers 
are described by some mathematicians as “seeming to resemble random 
lottery numbers”, Nature’s Number System representations have real 
meaning. By simply looking at the number you will be able to trace the 
number’s history back to the “alpha” prime 0.  

This is also reflected in the tables which will grow to huge sizes very 
quickly. These properties are essential in proving outstanding problems 
such as The Twin Prime Conjecture and related problems. Managing 
large numbers has always been the bane of mathematicians which is 
directly a result of the base 10 number system’s inability to give 
meaning to large numbers. The benefit is that Nature’s Number System 
numbers have fewer digits for very large numbers and this becomes 
increasingly so the larger the number. This is a topic in another part of 
this book, but for example, using one centimeter cubes to contain the 
numbers of the tables, the table for the 9th magic number Spp9 = 
1,000,000,000 modNt = 223,092,870 mod10  

The “modNt” or Nature’s Number System representation takes 10 
digits. The base 10 “mod 10” representation takes 9 digits but is already 
almost as large as the modNt representation. The corresponding table 
(using one centimeter cells) will stretch to more than 96 kilometers 
(9,699,690 + 1 columns) and will have p9 = 23 rows (the table will be 
23 centimeters high). The beauty of the Generator Function and tables 
is that it will now be able to manage these large numbers and the 
relationships between them. The table for Spp13 will stretch for more 
than 3 billion kilometers (or 20 times the distance to the Sun). The 
numbers will be represented by  
Spp13 = 10,000,000,000,000 modNt = 304,250,263,527,210 mod10. 

Clearly the mod10 base 10 number is becoming much larger than the 
modNt Nature’s Number System representation.  

The huge advantage of the tables will become immediately obvious in 
that all the numbers that will ever be prime numbers are contained in 
the “red” columns. So we can immediately do away with the “white” or 
non-prime columns. We will only be dealing with prime numbers and 
relatively prime numbers from now on. The numbers that are not 
primes that exist in the “red” columns are relative primes (relative to 
Sppn). The concept of relative primes will become obvious as these are 
needed to discover the true primes and as noted in the Calculate 

Primes book, in directly calculating prime numbers, they are naturally 
eliminated by the boundary conditions and selection rules of the 
Generator Function.  

Most mathematicians should be realizing that this greater than 
exponential growth of the Sppn values and the ability of the tables to 
find prime numbers (and gaps between prime numbers) means that the 
growth is larger than the logarithmic decline in density of the prime 
numbers themselves (known from the “Prime Number Theorem” and 
also proven in this text). This means that there are more prime 
numbers in each successive table than in the prior table, and it will be 
shown that this is true for twin primes and other patterns of prime 
numbers (there will be more twin prime pairs in each subsequent 
table). This provides a tool which was not available previously to 
understand prime numbers and their progressions. It is not just a game 
of numbers, but the predictability of location of all prime numbers 
using formulae will hopefully bring solutions closer to resolution. 
Whereas previously prime numbers, twin primes and other patterns 
were seen to diminish in occurrence as you get to larger and larger 
numbers, in the current system they become more plentiful. This is a 
direct result of the new number system. Additionally, the future prime 
numbers, twin primes and other patterns are generated from existing 
primes, twin primes and other patterns so we now have an 
understanding of how many there will be and where to look for these 
previously misunderstood entities.  

Using the photo of the first 6 tables above starting with the number 
“0” the α prime we next create the first table and see the properties. 
The result is the “alpha” (n = α) or beginning table. It has prime 
number 0 with Sppn = 0. All prime numbers are descendants of this 
number. This is step one of Peano´s Postulates. Add and subtract 1 
from 0. You find 0 - 1 = -1 and 0 + 1 = 1. We will not deal with the 
negative prime numbers in this book (nor complex prime numbers) as 
these are advanced topics beyond the scope of Volume I. It turns out 
that the negative primes have the same symmetrical structure as the 
positive prime numbers and amazingly enough, if you find patterns 
from any positive Sppn value, the patterns of primes subtracted from 
this number extend to negative infinity in the negative direction. All 
of this is beyond the scope of this book. So the first prime number to 
be generated is 1. It has the following values n = 0, p0= 1 & Spp0 = 1. 
This is where the “Nature’s Number System begins. Spp0 is the product 
of all the “generated prime numbers” and in this case 1 is the only 
member. In the Generator Function you also add and subtract all the 
relative prime numbers that have been discovered to date to Sppn but 
since there are none we have to wait until there are some generated in 
future tables. 

Add and subtract 1 from Spp0 = 1. You find 1 – 1 = 0 (already know to 
be prime) and 1 + 1 = 2. Since 1 was a generated prime (but just 
happens to be the same as 1 from the other Generator Function rule), 
we do not have to add it again since it will only find the same new 
prime numbers. So 2 is a newly discovered prime number. As you 
watch this process you will find that the process finds all the prime 
numbers by simply adding and subtracting already found prime 
numbers to the magic number. This table is built from the prior table 
and has values n = 1, p1 = 2, Spp1 = 2. These first two tables will be the 
only times that pn = Sppn… all future values will be different. The fact 
that 2 is “even” is not an issue and as you will see (using Nature’s 
Number System) all discovered prime numbers will appear to have the 
“only even number conundrum”.  

It turns out that every discovered prime number will eventually be 
retired from use so to speak so in this respect, the fact that 2 is even, 
makes it like other primes, not unlike other primes, this is a subtle 
concept 
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If you are a novice or a hardened mathematician you have to realize 
that building a firm foundation is key to success later in the process. 
We are now building that foundation so that when you eventually have 
very large prime numbers, or twin prime pairs, or any other pattern of 
prime numbers or any patterns of prime gaps that you can imagine, 
that you will be able to find their ancestry back to these primitive 
beginnings. All future prime numbers will be built on a unique 
ancestry leading back to the number “0” the “alpha prime”. Twin 
primes (primes of gap = 2) for example will have an ancestry back to 
the original twin prime that created that particular lineage.  
Moving to create the next table (n = 2), we begin by finding the next 
prime number. Add and subtract 1 from Spp1 = 2. You will find 2 – 1 
= 1 (which we already know is prime) and 2 + 1 = p2 = 3. Multiply the 
known primes to date to find the next magic number = 1 x 2 x 3 = Spp2 
= 6. You will observe something unique by this time. If you take the 
rows of the prior table, they are transposed in order to create the first 
row (row 1) of the following table. Then you add the prior table value 
of the magic number 2 = Sppn-1 to the “parent” numbers in cells of the 
top row to create the values in the columns. This is a visualization of 
one of the main properties of the Generator Function as explained in 
the “Calculate Primes” book and accompanying DVD lecture. Each 
table has Sppn-1 + 1 columns (the extra column is for the “0th” column 
which maintains symmetry - an essential part of the Generator 
Function remembering that the number 0 is part of the group) and 
each table has pn rows (equal to the nth prime number associated with 
the nth table).  

Now take a second to look at the tables we are generating above. The 
first row of every table is simply the rows transposed from the prior 
table. Notice in the tables the symmetry around the center points of 
row 1 and of the center of the table. All the future prime numbers fall 
in the red columns. We will eventually create tables that eliminate all 
the other non-prime columns and will no longer see or need them. 
Only the prime numbers will be used to create new prime numbers. 
Every prime number will have a “parent” and ancestry chain leading 
back to the “alpha prime” = 0.  

As an example, take the seemingly heretofore unrelated prime numbers 
5, 29, 59, 89 and 149. Do you think these have any relationships at all 
or should I ask, prior to looking at these tables would you have 
suspected that these numbers were “related” in any way? The fact is 
that 29 is the parent of 59, 89 and 149. They are “Generated” from 29 
using the Generator Function. 5 is the parent of 29 (from the prior 
table) and 1 is the parent of 5 with 0 being the parent of 1. Confirm 
this by following all back to their top row values in the table where they 
were “generated”. In turn when we get to the next larger table (which 
you are to create as an assignment but are created later in the book) 
you will find all of these generating more prime numbers. As with any 
complex problem, there are “boundary conditions” that must be 
followed so be careful there are many pitfalls along the way that are 
resolved by following simple rules of algebra.  

You may be wondering at this point why we are finding “non-primes” 
and what is their roll in all of this? This is where most mathematicians 
would cease to look and this is why I discovered this (I had complete 
faith that the designer of what we call “Nature” had a system and I was 
pursuant to find it). The “false primes” are actually “relative primes” 
with respect the table in which they are found. With respect to a given 
table, and in terms of Group Theory, the relative primes are every bit 
as valid as the real primes (relative to this table). For example, the 
number 209 is in the red column of “parent” 29 (209 = 29 + 6 Spp3 = 
29 + 6 x 30 = 209).  

To understand the roll of “false primes” return to the “Calculate 
Primes” book to understand the roll of these numbers. 209 = 11 x 19 
both of which are primes “yet to be discovered” by the Generator 

Function process and both are “relatively prime” to Spp4 = 210. Only 
2, 3, 5 and 7 are factors of 210. 11 will be a prime factor in the next 
table Spp5 = 2310 so it is relatively prime to 210. In terms of our table 
Spp4 , 209 is as valid a prime number as any “real prime”. 209 is in fact 
needed to generate future real prime numbers and will be a viable 
column “parent” in the next table Spp5 = 2310 (= 2 x 3 x 5 x 7 x 11). It 
will generate the true prime numbers (remembering that Spp4 = 210) 
… 209 + 1 Spp4 = 419, 209 + 3 Spp4 = 839, 209 + 4 Spp4 = 1049, 209 + 
5 Spp4 = 1259, 209 + 8 Spp4 = 1889, 209 + 9 Spp4 = 2099 and 209 + 
10 Spp4 = 2309. So “false primes” are needed to generate future real 
prime numbers and as described in “Calculate Primes” when their 
“usefulness” is completed they are eliminated in the natural 
progression of the Generator Function. Make sure you understand this 
concept … that adding relative prime numbers (which includes real 
prime numbers) to a multiple of Sppn-1 are the only numbers than can 
be prime. This is not a sieve of eliminating unwanted numbers but the 
direct calculation of prime numbers using only the relative prime and 
real prime numbers generated in the prior iteration of the Generator 
Function which is the same process as building the Sppn Tables. That 
is, the tables reflect the rules and boundary conditions expressed in the 
Calculate Primes book but in a visual form.  

Like any process, at first it may seem cumbersome. I always marveled 
at the effort put into building roads or an airport. That seems like an 
awful amount of work just to have a few people move around. But the 
effort of building the basis allows future generations to build on the 
efforts of the past. It is more than worth the effort. Mathematicians of 
all groups are more than parsimonious about such things.  

There is a subtly fine point here. Remember that 7 is NOT relatively 
prime to Spp4 = 210 (7 is a member of the prime number group used 
to generate 210 (210 = 2 x 3 x 5 x 7), so we have to mark and remove 
all the multiples of 7 from the table since adding any multiple of 210 
to and multiple of 7 in the next table will not result in a prime number. 
The reason is basic algebra (for 210 plus any number containing 7 as a 
factor you can factor out 7 and the number will not be prime … this is 
the simple distributive property of arithmetic). We are only dealing 
with prime and relatively prime numbers which are the “parent” 
numbers in the top row red boxes (not any other numbers). This is not 
a sieve or elimination process it is direct calculation of the primes using 
only prime numbers while remembering that relative prime numbers 
in a table are as much “prime” as real prime numbers. The products of 
7 are 7 x 1 = 7, 7 x 11 = 77, 7 x 13 = 91, 7 x 17 = 119, 7 x 23 = 161, 7 
x 29 = 203. All other cells of this table will carry to generate row 1 of 
the next table Spp5 = 2310 = 2 x 3 x 5 x 7 x 11. The multiples of 7 are 
the ONLY cells from the red columns that will NOT carry to create 
row 1 of the next table.  

Notice as you eliminate the multiples of 7 from this table, that of the 
cells eliminated, ONE AND ONLY ONE cell is eliminated in each red 
column. These eliminated cells are located symmetrically around the 
½ point of the table (= 105) leaving all the remaining red cells (that 
carry to create row 1 of the subsequent table) to be symmetrical around 
this same ½ point. The end result is that this symmetry carries from 
one table to the next and to infinity. The prime numbers exhibit 
symmetry on this local level and this has huge ramifications in proofs. 
For example, in solving Goldbach’s conjecture, it will be shown that 
this symmetry is essential in explaining why the large local values of 
Golbach Prime Pairs is maximum at vales of m Sppn (m = 1, 2, 3, … ∞) 
where the incrementing variable “m” is multiplied with any sequential 
prime product Sppn. 

At this point in this table we can also eliminate all of the relative primes 
of this table by multiplying the prime numbers and relative prime 
numbers of row 1. These product numbers appear to be out of any 
symmetrical pattern in the table BUT they in fact will have symmetry 
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if we extend the table downwards to the next sequential prime product 
(an advanced topic not covered in this book Volume I).  

This carries with it some extremely important properties. All the twin 
primes, all the symmetries, all the prime pairs of gaps = 2, 4, 6 … will 
carry to the next table AND BE PARENTS of new primes and relative 
primes of the following tables. This is the fundamental property which 
leads to the “Law of Conservation of Gaps” that is essential in the proof 
of the Twin Prime Conjecture and the extended Prime Gap conjecture, 
the Goldbach Conjecture and leads to our understanding of primes in 
general. It will allow equations to be created which predict many new 
properties of prime numbers to infinity.  

Notice the following (these properties will carry through to all future 
generated tables and will be very useful). The numbers 1 & 29, 7 & 23, 
11 & 19, 17 & 13 are symmetrical around the ½ point of row 1 which 
is = 15 (Spp3 = 30 the top right corner box … the ½ point in row 1 is 
15). The ½ points will become “critical” in our construction of 
solutions of unsolved problems dealing with prime numbers (this is a 
play on words that some may catch and the future topic of another 
chapter). The products of 7 listed above are symmetrical around the ½ 
point of Spp4 which is 105. This is understandable since all we did was 
multiply the first row by p4 =7 (this symmetry was carried over from the 
prior table). Thus the symmetry we find in row 1 that was carried over 
from the prior table is now reflected in the products of 7 removed from 
the table, therefore all the remaining “relative primes” (some true 
primes and some “false” primes but none the less all relatively prime to 
Sppn) will be symmetrical around the ½ point also. Since all the relative 
primes will be transposed to form row 1 of the next table, the symmetry 
will be carried over. Symmetry is an essential property of the prime 
numbers when working with the tables. Notice also that if you add 
these number pairs they all add to be the prior table value Spp3 = 30 
which is the top row carried over from the prior table.  

Regarding the issue of “random” and “pseudorandom” primes, the 
interesting point is that the products of 7 listed above will (as already 
noted) “eliminate” one and only one element from each of the red 
columns and remember that these eliminated elements (cells) will be 
symmetrical around the ½ point = 105 in the Spp4= 210 table. The 
process is not “random” nor is it “pseudo-random”. The remaining 
elements after removing the products of 7 have perfect symmetry and 
if one subtracts the values left in the table from Spp4 = 210 you will 
find the same numbers ascending as descending. Another way of saying 
this is that every remaining relative prime number pi in the table has a 
corresponding “partner” pj for which pi + pj = Spp4 = 210. What you 
are seeing here is the beginning of a tool that will be valuable in 
working on the Goldbach Conjecture which asserts that every even 
number is the sum of at least 2 prime numbers. Another very 
interesting aspect is that there is never any symmetry across the vertical 
central line of the table (except for the center row). This will have 
important ramifications in the “Law of Conservation of Gaps” proof 
since if one cell is eliminated on one side of the table it will not be 
eliminated on the other, and since the columns are symmetrical, it is 
guaranteed that at least one of the cell patterns will not be affected by 
cell elimination by products of pn.  

Another important observation is that the prime “gaps” or spaces 
between prime numbers found in the tables are generated in the same 
manner as the prime numbers themselves. Look on the top row 1 of 
table Spp4 = 210 and observe the gaps between successive parent prime 
numbers. Find all the gaps of size “2” where the difference between 
successive row 1 numbers is 2. These are (11,13), (17,19) …(we will deal 
with the gap (29,31) shortly as part of table Spp4). Notice that they are 
also symmetrical around the center point 15. Now observe all of the 
twin prime pairs that were “generated” below each pair in the red 
columns. There are more pairs generated in the Spp4 table than in the 

prior Spp3 table. The power of generating tables based on the faster 
than exponentially growing values of Nature’s Number System will 
now give the tools necessary to understand and move towards a 
mathematical proof by induction for the Twin Prime Conjecture as 
noted earlier. There will be more twin prime pairs in each subsequent 
table. This is contrary to the traditional belief that there are fewer and 
fewer primes and therefore twin primes as you go to higher and higher 
numbers. The opposite is true using the Nature’s Number System. This 
carries also for gaps of any size.  

Take any other “false prime” left in the table of n = 4 where Spp4 = 210 
(after removing the multiples of 7 as noted above) and you will find 
that all will generate prime numbers in the following table Spp5 = 2310. 
After eliminating the multiples of 7, discover all the “gaps” between 
the remaining relative prime numbers. These will all carry to the next 
table Spp5 as the row 1 members to create new columns of potential 
prime numbers.  

One of the amazing properties of “gaps” when viewed from the table 
construction is that there is a “Conservation of Gaps” which is a 
theorem proven in this book. Once a gap of any given size is formed it 
will be propagated and conserved to infinity and will additionally 
generate an infinite number of decedent gaps of equal size. You will 
not understand the full implications of this at first but it is very 
important to comprehend that it is the relative primes (both real and 
false) which will carry to the next table. Unusual “rogue gaps” or “rogue 
primes” do not carry to the next table and are generally lost in the 
progression to the next table. This has implications in proofs dealing 
with the question of infinite numbers of gaps of a given measure.  

An early large “rogue” gap in the prime number table is the seemingly 
out of place very much larger than average gap = 34 between prime 
numbers 1327 and 1361. If prime numbers and gaps generate future 
primes and gaps, does this rogue gap then propagate into future tables? 
The clear answer is NO. Because of the method of future table 
construction, using all relative and true primes, all of the cells that were 
eliminated in the creation of this rogue gap ARE RELATIVE PRIMES 
and thusly carry forward to the next table. Explaining further, look at 
the table Spp5 = 2310 where this large gap occurs. The products of row 
1 that create this gap are all due to RELATIVE PRIMES found in row 
1 of this table. The rogue gap DOES NOT carry to the next table. This 
is important in understanding the Goldbach Conjecture, the Maximal 
Gaps structure and the Twin Prime Conjecture all of which depend on 
the orderly structure of building the tables to infinity. This is just one 
of dozens of subtle aspects of building tables.  

Complete the process of discovering all the true prime numbers in the 
table n = 4 by eliminating all multiples of 11 and 13 (multiplied by 
members of the top row red boxes). You stop at 13 because it is the 
largest prime number less than the square root of 210 (√210 =14.49). 
Observe the gaps between all the real prime numbers. As the tables are 
developed, the values of many parameters are recorded and eventually 
you will discover that generalized formulae can be derived to give the 
value of a given parameter in one table based on the parameter value 
in the prior table. This is the essential benefit of the tables in 
generalizing proofs by induction, for example as already noted, the 
number of twin prime pairs grows greatly with each new larger table.  

Another minor point here raises the question “what if we run out of 
new prime numbers to generate new tables?”. The answer is found in 
the next and subsequent tables Spp5 Spp6 etc and is again a result of the 
Generator Function in general which guarantees that we will find more 
primes in every iteration than the prior table. We will always have more 
than sufficient primes to continue the generation of the next table and 
on to infinity. The process is self generating. The tables may seem 
simple at this point and possibly hardly worth the effort. Believe me 
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when I say that even trained seasoned mathematicians will eventually 
be struggling to comprehend the complexities that emerge from these 
seemingly primitive simple tables. 

One last minor but very important point. Note that the second column 
always has 1 as parent (upper cell value). The second to last column 
always has (Sppn-1 – 1) from the prior table as parent (upper cell value 
that carries over from the prior table). Look at the values of the cells in 
these two columns. These columns always will create potential twin 
prime pairs as they always differ by 2 (e.g. (29,31), (59,61), (89,91) etc). 
It is true that this will always be the case for any table Sppn . The logical 
argument is as follows. In any Sppn Table there is the possibility that 
Sppn - 1 could be prime but it may not be prime (it in fact is one of the 
richest areas to find prime numbers) per the Generator Function 
boundary conditions rules. Sppn - 1 can either be a true prime or a 
relative non-prime … but note !!! if a non-prime it will always be a 
relative prime with respect to the Sppn table and therefore carry to form 
row 1 of the next table. The logic follows. Since the only numbers that 
cannot carry to form row 1 of the next table are multiples of pn , and 
since pn is a factor or Sppn , then Sppn - 1 cannot have pn as a factor and 
therefore Sppn - 1 will always carry to form row 1 of the next table. At 
any rate, this assures that the number Sppn - 1 will always carry over 
to create row 1 of the next table even if it is not prime. This assures 
that every Sppn table will have these columns and they will always 
produce real twin prime pairs. There are multiple ways of proving the 
Twin Prime Conjecture using these tables. Be clear that all real and 
relative prime numbers which are parents (top cells in columns of a 
given table) will produce real prime numbers in their columns.  

The factors of Sppn – 1 (if it is not prime) can be discovered by 
multiplication of members of row 1 of the table, but what about Sppn 
+ 1 ? This is resolved by the same method because the magic number
plus 1 cannot have any factors that are not contained in the Sppn table. 
This is important in identifying whether Sppn ± 1 is a twin prime pair
or not as it belongs to both the present table and the next table also.
But as noted, no matter whether Sppn ± 1 are both prime, one is prime 
but the other is not or both are not prime is irrelevant to carrying both 
to the next table. They are both relatively prime to Sppn and therefore
both will always be carried into the next table to generate more twin
primes. Thus columns 1 and the top right cell of the next table will
ALWAYS continue to generate primes and many will be twin primes. 
The level of complexity of the tables is just beginning. They become
very complicated when the structure of one table is seen working into
many future tables (its patterns will be present in all future tables to
infinity). The prime numbers have an infinite number of patterns
working in harmony and you are just beginning to see the smallest part 
of these patterns and their implications.

There is a fundamental property from the Generator Function that 
states that a magic number Sppn generates prime numbers in its 
respective table but any multiple of Sppn also will have the same 
properties since the list of numbers that are relatively prime to Sppn 
will also be relatively prime to multiples of Sppn. This is the reason why 
all prime numbers greater than 5 can be written in the following form 
(an often quoted “fun fact” about prime numbers) n6 ± 1 (where n = 
1,2,3,4 … ∞). The work in this text resulting from the new definition 
of prime numbers using the Generator Function will alter this to a 
different more complete form. It actually should read m6 + (1,5) ; m = 
1,2,3,… ∞. That is, you add any multiple of 6 to 1 and 5 alternating. 
This gives the same result and comes from table n = 2 with Sppn = 6. 
We will show that there is an infinite number of similar equations … 
the second being as follows m 30 + (1,7,11,13,17,19,23,29) for table n 
= 3 for Sppn = 30. This equation gives fewer results for all primes 
greater than 30. In general the following holds true for all Sppn tables 

of which there is an infinite number. Note these values are symmetrical 
around the ½ point 15 and add to equal 30 (e.g. (1,29), (7,23), (11,19) 
and (13,17) ).  

We first define the term (first used in the Calculate Primes book) called 
a “comb”. Like a comb that you use to comb your hair, the prime 
number prediction comb has teeth that match the prime number 
patterns shown in the table Sppn as defined by the boundary conditions 
of the Generator Function. A “combn-1” defined for table Sppn is the 
first row of table Sppn . The comb is defined for the previous table (n-
1) since row 1 of table Sppn is built from connecting all the rows of the
prior table (n-1) in sequential order (less the multiples of the prime
number related to the prior table pn-1 ).

combn-1 = (1, pn , pn+1 , … , Sppn-1 – pn+1 , Sppn-1 – pn ,Sppn-1 – 1) or all 
the elements of row 1 of table n (note the symmetry). This is the wave 
pattern to infinity starting at Sppn-1. 

This is the set of relative prime numbers of row 1 of table Sppn (before 
removing multiples of pn) carried from combining in sequence all rows 
of table Sppn-1 … these are used to create the repeating wave of potential 
prime values to infinity with Sppn-1 as the wavelength. In general m 
Sppn-1 ± combn-1 ; (m = 1, 2, 3, …, ∞ ) = pattern for all future primes 
(the patterns are symmetrical around the mid point of row 1 of table 
Sppn = ½ Sppn-1 and the repeating wave extends to positive and negative 
infinity).  
Three examples of combs are given below. Note the complex subscript 
notation that is consistent with the definition given above. One of the 
skills of using the Generator Function and all of its implications is the 
correct use of subscripts. It has been years of using this notation that 
has brought me to the point of publishing this work. Note that the 
counting subscript “n” is always viewed from the table that you are 
working with. Future and prior tables are noted with subscripts “n + 
1”, “n + 2”, “n + 3” … and “n – 1”, “n – 2”, “n – 3” … respectively. In 
viewing the three example “combs” below, imagine taking row 1 
(including all prime and relatively prime numbers) from the table you 
are viewing. All the numbers in the top row then constitute the comb 
values. There are some other details that will be clarified in the future 
but this is a lot of information for this point in the book. 

1. m6 + comb2 (n-1 = 2 for Sppn-1 = 6) where comb2 = (1,5) ; 
(m = 1, 2, 3, …, ∞ )    … row 1 of table Spp3 =30 is
symmetrical around the ½ point of row 1 of table n = 3
which is 3. 

2. m30 + comb3 (n-1 = 3 for Sppn-1 = 30) where comb3 = 
(1,7,11,13,17,19,23,29) ; (m = 1, 2, 3, …, ∞ ) … row 1 of
table Spp4 =210 is symmetrical around the ½ point of row 
1 of table n = 4 which is 15.

3. m210 + comb4 (n-1 = 4 for Sppn-1 = 210) where comb4 =
(1,11,13,17,… ,209) ; (m = 1, 2, 3, …, ∞ ) …row 1 of table
Spp5 =2310 is symmetrical around the ½ point of row 1
of table n = 5 which is 105 (as an exercise complete comb4

remembering to include all relative prime numbers from
row 1). 

Each table n has a combn-1 found in row 1 which predicts fewer 
potential primes than the prior combn-2 of the previous table. This is 
essential in creating the McCanney Prime Density Function. Note that 
the traditional way mathematicians state the n = 2 equation is m6 ± 1 
which one can show easily is the same as m6 ± (1, 5) where m = 1,2,3…. 
This is where modern mathematical attempts at organizing or 
predicting the prime numbers with analytic equations ends. The 
current work shows that there are an infinite number of such equations 
(one for each table Sppn). There are similarly an infinite number of 
equations for prediction of twin primes. The first example from table 
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n = 3 is as follows: (5 + (m – 1)6, 1 + m6); (m = 1,2,3…, ∞). All twin 
primes meet these criteria. This first equation soon breaks down 
creating false solutions, but future equations are more accurate.  

Every table Sppn will have many such equations to predict twin primes 
(more than one for each table) that will refine the predictions of prior 
table equations to identify all future twin primes to infinity. One result 
of these equations is that there will be more primes, more twin primes, 
more primes of all gap sizes in every subsequent table. The proof of this 
is essential to understanding the growth of prime structures in future 
tables. Similar equations will be presented in a future Volume of this 
series showing how to predict patterns of primes or gaps or gap patterns 
of any size or dimension (this is an advanced topic).  

The Spp2 = 6 table is a parent of all future prime numbers when using 
the Generator Function. All prime numbers will have this form 
because 6 is a magic number and the Generator Function states that 
all future primes will be descendants of this number. Likewise, the so 
called “Mersenne Primes” of the form 2n – 1 are an extension of the 
Spp1 = 2 magic number (the first significant sequential prime product) 
and again the Generator Function predicts that all future prime 
numbers will be of the form 2n ± 1 which any mathematician can 
convert into the official “Mersenne” form (we also include +1 as an 
alternative form). The problem with these very primitive forms of 
“prediction of primes” formulae will become evident when the 
Generator Function begins generating very large much more 
complicated equations based on very long Sppn “wavelengths”. These 
will equally be predicting prime numbers but with much greater 
accuracy and with many fewer “false” primes. This is the basis for easily 
breaking the RSA codes as described in the second book of this series 
“Breaking RSA Codes for Fun and Profit”. One goal in a later chapter 
will be to take the many different “prime types” and examine them in 
light of the Generator Function as was just done with some basic 
traditional prime “prediction” equations. It will be shown also that 
some of the types of primes do not have a basis and can be shown to 
be simply novelties that find a few early primes or prime patterns but 
which will fail (with the reasons given for such failures). These are 
advanced topics.  

Begin to notice some of the other features of the tables as they grow. 
The basic discussion of constructing tables will end here and continue 
in later chapters that deal with proofs on theorems such as the “Law of 
Conservation of Gaps”, “The Twin Prime Conjecture”, the “Goldbach 
Conjecture”, a topic “In Search of the Rogue Prime” dealing with 
Maximal Prime Gaps, the proof that “The Density of Primes is 
Monotonically Decreasing” relative to the Generator Function wave 
lengths giving an upper bound on prime numbers which can be used 
with traditional density equations and will make some related 
observations regarding the Riemann Hypothesis.  

Before leaving, see the next diagram showing an example of the table 
n = 4 modified with more information to give you an inkling of what 
is to come. The red arcs above the table indicate twin prime pairs with 
all the twin prime pairs below the “parent” pairs. See how the 1 and 29 
columns generate twin prime pairs along with their “children” below 
them. This occurs in all tables because the value of Sppn-1 – 1 (in this 
case 29) will always be relatively prime to Sppn-1 and will ALWAYS carry 
to the next table to generate more twin primes. NOTE that we will 
create a much simpler table by eliminating all the gray columns. The 
large tables become more complicated for many reasons not the least 
of which is keeping track of all the gaps, the symmetries, the many 
parameters, etc (Figure 3).  

Figure 3) Represent twin primes. 

The red arcs above the table represent twin primes in the top row cells 
and their respective children in the columns below that were calculated 
from the top cells. The blue arcs represent symmetry of gaps = 4 and 
other gaps are not marked. Note that the symmetry spans the top row 
with 15 being the center point (this was the table center point of the 
prior table n = 3) and this symmetry carries into this table. Since only 
the white cells of the table do not carry to create the next table (all 
other cells from the red columns DO carry to the next table), and since 
these white cells are symmetrical around the table ½ point, the 
symmetry of both primes and gaps is preserved from table to table 
around the ½ point. This fact allows a necessary concept in solving the 
Goldbach Conjecture.  

The tables are reciprocal in that one table generates the next table, but 
that table in turn can generate or illustrate the properties of the prior 
table. The structure of gaps and their symmetry around the ½ point is 
also preserved from one table to the next. In other words, not only are 
the tables directly calculating prime numbers and maintaining their 
symmetries from one table to the next, but they are preserving the gap 
structure also. For example, every relative prime twin prime gap in the 
above table carries to the next table and these and all of their children 
twin prime pair gaps will also carry to all future tables with all of the 
symmetries around the ½ point. 

We will show in more advanced chapters that this table in fact forms a 
Group using the traditional mathematical definition with the sums of 
primes wrapping back into the table and with (1,29) forming a twin 
prime within the Group. These Groups have very important properties 
from a pure mathematical perspective and should open many new 
avenues of inquiry. None of this would be expected in the traditional 
view of prime numbers. The study of these tables becomes far more 
complex. This is a simple beginning. 

One last point is regarding the region between red columns 1 and pn-1 
= 7 in row 1 and Sppn-1 - 1 = 30 – 1 = 29 and Sppn-1 – 7 = 30 – 7 = 23 
also in row 1 (e.g the gap regions (1,7) and (23,29) which are grey or 
non-prime columns). These are defined as “Dead Zones of table n” = 
DZn and are symmetrically located around the ½ point of row 1 = 15.  

Real primes 2, 3 and 5 are noted in blue. All cells below them will 
never be primes or even relative primes since these are all factors of the 
sequential prime products of this table and all future tables. None of 
the numbers in the right hand Dead Zone are prime nor relative primes 
including the top row cells. In prior tables 2, 3 and 5 have generated 
primes that will continue to generate primes, relative primes, twin 
primes and all other structures to infinity. Once a prime number pn 
enters the n + 1 table it will forever be left in the Dead Zone from that 
point onward. This is just one of the dozens of aspects of tables that 
will be discussed in future chapters and is critical in understanding 
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prime gap structures. These gaps will carry into future tables to 
infinity. As each new table is formed stringing together the rows of the 
prior table, all of this structure carries forward from every prior table 
and very importantly, with the symmetries carried with them around 
their respective ½ points. There is structure in every table with 
substructures of every prior table going back to the alpha table. This 
structure created by waves of combs adding together is what gives the 
prime numbers and the related gaps their structure. It is very 
recognizable once you see it in what used to be a seemingly random set 
of numbers we call the primes.  

Additionally, note that since the white cells fall with one and only one 
in each column (these will not carry to create the next table), the 
patterns that these create in the rows carries forward to the next table 
(as you string together the rows of one table to form row 1 of the next 
table). This sub-structure gives the primes their overall structure which 
only appears to be random. Every row has a slightly different pattern 
(each differs by just one cell) although the underlying structure is 
exactly the same. This gives the “wave” patterns a unique fine structure 
that varies on a small scale. This structure can be uniquely expressed 
in the form of an equation for each table n. Each table will have a 
unique equation that expresses this “comb” or pattern which when 
added to any multiple of Sppn will predict all prime numbers to 
infinity. All prime numbers will be of this form and all other numbers 
will be non-prime. Each successive table’s equation will modify the 
prior table’s equation and will create a “comb” which will eliminate 
more non-primes. This leads to the concepts necessary to create a 
“Prime Density Function” and also determine that there are not only 
an infinite number of twin primes, but also shows that every twin 
prime will generate an infinite number of twin primes. All of these 
twin primes will have ancestry back to the originating twin prime and 
ultimately to the alpha prime 0.  

This is not a sieve nor any other form of random search for prime 
numbers. This results from directly calculating prime numbers using 
only prime numbers within tables which are using red columns only 
(no non-prime numbers are used). The predictions of primes using the 
analytical equations is to infinity with the repetitive wavelength equal 
to the value of Sppn . One never considers the non-red columns, which 
would be the case of a Sieve or other traditional method of determining 
prime numbers (e.g. all numbers not found in the multiplication table 
or random searches using computers testing Mersenne primes of the 
form 2n – 1 with near infinite amounts of super computing time). As 
the Sppn tables get larger, the near range prediction of prime numbers 
becomes very accurate using the predictive equations that are naturally 
derived from the “combs” which are added in wavelengths of Sppn to 
the value of Sppn . This is the direct calculation of prime numbers using 
the Generator Function with the boundary conditions and selection 
rules. 

As an example shown later in this book, the largest RSA Factoring 
Challenge numbers are easily contained in Sppn tables with predictive 
equations that can target the factors without the need for even an 
average home computer although that is not the goal of this work. 
What previously seemed to be large numbers are now well within the 
reach of simple calculations using analytic equations (without the use 
of computers at all). The next chapters detail the new modNt number 
system which will make the entire process much more natural along 
with the identification of prime numbers. Large numbers will no 
longer be just unrecognizable strings of digits. Each digit will have 
significance relative to the ancestry of the numbers for both relative 
prime numbers (including true primes and non-primes which are 
relatively prime to Sppn) as well as non-prime numbers. Then in the 

subsequent chapter there is a simple conversion presented to convert 
back and forth between the modNt number system and modulo 10 
(mod10) or any other modulo number system.  

CHAPTER 3 
NOTES ON MODNT NUMBER SYSTEM 

The following gives further details on the new “Nature’s Number 
System” or “modNt” number system. It has many advantages over any 
other number system especially when dealing with prime numbers and 
the basic understanding of numbers in general. The following is a table 
presented in the text for review showing the conversion of modNt to 
mod10 (modNt numbers are on the left of the matching number pairs 
with mod10 on the right of each column of numbers). You will 
recognize a typical counting model but using the values of Sppn as 
“powers” to higher order digits rather than powers of 10 as in the 
mod10 number system. Look at the lower order digit patterns of the 
modNt numbers. After the table are more details of the modNt 
number system including how to convert between the two systems. 
Most important below is to see the modNt values for the magic 
numbers 1, 2, 6, 30, etc. (values in modNt are as follows 1, 10, 100, 
1000, etc.) and their multiples (e.g. 6 x 2 = 12 mod10 = 200 modNt; 
30 x 2 = 60 mod10 = 2000 modNt). Even seasoned mathematicians 
will take some time to understand all the subtleties of this new number 
system. A word of warning … the first appearance is that the modNt 
numbers are larger and more complicated, however because the factors 
between successive digits of modNt grow as 1, 2, 6, 30, 210, 2310, etc., 
whereas the mod10 numbers grow as 10, 10, 10, 10, etc., the modNt 
numbers soon use far fewer digits to represent a given number than 
mod10 (Figure 4). 

Figure 4) Nature number system modNt vs mod10 number system  to  
72. 

Below is a table which defines the modNt number system with relation 
to the magic numbers and associated values of n, pn, Sppn, the 
maximum digit value for each “power” and the patterns of each digit. 
It defines the modNt number system up to Spp7 - 1 = 510510 - 1. Each 
pattern of digits in each column repeats as shown then repeats again 
and again as with any counting process. Note that the first two rows 
are subtle so understand that row 1 is the number of the digit (starting 
from right to left) however “n” represents the “nth” sequential prime 
product which is listed in row 2 (Table 1 - next page).  



Principles of prime numbers 

J Pure Appl Math Vol 8 No 1 January 2024 17 

Table 1 – Definition modNt Number system to 510510 - 1 

Note that decimal mod10 numbers (16, 12, 10, 6, etc.) are used to 
designate digits rather than create individual symbols to represent each 
digit. This is commonly done in mathematical number systems such as 
hex numbers or especially where the base number is greater than 10. 
We could have created other symbols or used the various alphabets or 
Greek alphabet but even they would eventually run out of symbols so 
it is easier to use the familiar base 10 system with dots to separate the 
digits. Eventually we will not use numbers at all but will use tables with 
indicators in key locations so this problem goes away as the tables get 
larger. This book does not delve into rational, real or complex numbers 
using the modNt number system. That is an advanced topic for another 
book. The negative and complex prime numbers follow the same 
patterns as the positive prime numbers and interestingly enough the 
wave patterns that start at any positive magic number (or integral 
multiple thereof) flow into the negative prime numbers making an 
even more complex but elegant set of closed number systems.  

Notice the last row at the bottom of the table above. The max number 
up to that column if you add “1” you get the next higher magic number 
value = Sppn+1 . For example, if you add 1 to 30029 in mod10  

In mod10    1 + 30029 = 30030 = Spp6 

in modNt   1 + 12.10.6.4.2.1 = 1,000,000 = Spp6 = 106 

There are 6 digits in the number 12.10.6.4.2.1 (12, 10, 6, 4, 2 and 1) 
and each digit is the max value in its column so by adding “1” you carry 
to the next column just as with any other form of addition.  

There are many subtle relationships in the table above. The modNt 
counting number “n” is one less than the column number of the digit. 
The tables of Sppn start with n = 0 with the value of the prime number 
p0 = 1. There is a great consistency between the values defined for the 
tables and the related parameters. This is why I have chosen to call 
them “Nature’s Numbers” because any alien race on the far side of the 
universe would discover them also and even though they may define 
strange symbols the end result would be the same. The tables can be 

built without any number system at all but any other number system is 
clumsy and awkward in the tables. The Natures Number System flows 
in the tables and as you go across the rows only the lower order digits 
increment, whereas as you go down a column all the lower order digits 
are the same and only the single highest order digit increments. If the 
number value in the top cell of a column is not relatively prime to the 
value of Sppn-1 , then all the numbers in that column will have the same 
factor in common and will not be prime. That is why we can eliminate 
all the non-red columns and only deal with the “red” or relative prime 
columns, making life much easier. This is because all numbers are 
organized not in groups based on products of prime numbers (as in a 
Sieve) but are based on addition and subtraction based on the number 
system which is based on sequential prime products Sppn (the modNt 
number representation itself and its location in the table tells if the 
number is prime or not).  

Remember that the number Sppn-1 has factors made up of all the prime 
numbers up to and including pn-1 . If the top number of a column of a 
table has a factor included in that list of primes, then it is not relatively 
prime; remember that the cells of any column are obtained by adding 
multiples of Sppn-1 (the magic number of the PRIOR table) to the 
number in the top cell of that column in table Sppn . This is how the 
tables exhibit factorization, a process that is laborious at best with 
decimal numbers. Factorization is an inherent part of the new number 
system and that is why large numbers represented in the Nature’s 
Number System and shown in a Sppn Table have meaning. But this is 
also how the tables separate out the prime numbers since they occur 
only in the columns whose top cell value is relatively prime to Sppn-1 . 
By this method we isolate all the prime numbers and then work with 
them in groups within each table. These groups have advanced 
mathematical properties many of which are not obvious at first sight.  

There is a cross over point when comparing modNt vs mod10 numbers 
in which mod10 numbers have fewer digits up to a point but after that 
the modNt numbers have fewer digits and represent numbers more 
efficiently. Not only are there fewer digits, but the digits have meaning 
and large numbers can be read to give information about the number 
relative to the prime numbers (not only for prime numbers but for all 
numbers). Look at the above table and then attempt to construct some 
numbers using modNt. The conversion between modNt and mod10 is 
relatively easy (shown in the next chapter) and is useful for example if 
you have a large decimal mod10 number one can convert it easily to 
modNt to see if it is a relative prime or not and begin to determine 
factors.  

Also notice the importance of “1” being a prime number in the system 
as it represents the first column in the new number system (there would 
be a gaping hole there and we would soon have to invent it if it had 
not already been there). As discussed in the appendix of the prior book 
“Calculate Primes”, 1 fits all of the criteria to be a prime number being 
divisible by only itself and 1 (reference the last page for details). One 
additional point here is very subtle and important.  

The number of mod10 digits required to represent a given number is 
fewer (than modNt numbers) until a “crossover point”. This is not the 
only measure of efficiency of representing numbers. The successive 
Sppn values 1, 2, 6 which are the steps between successive digits in 
modNt (being less than 10) give less than 10 times the prior “digit” in 
the counting system, however the next step with Spp3 = 30 jumps far 
beyond 10. It takes a bit of counting before modNt catches up and 
overtakes mod10 in efficiency of representing numbers (the number of 
digits used to represent a given number) but when dealing with 
numbers of extreme size this makes all the difference in the world, not 
to mention all the benefits rendered to small numbers in the form of 
organization.  
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For comparison the modNt table for 210 is given below. Compare the 
patterns of the mod10 table above with the table below to see the much 
more organized system of numbers using modNt. Look at the 
progression of the last digits (lower order digits) as you go vertically 
down each column and then note the patterns of first digits (higher 
order digits) as you go horizontally across each row. Do you see the 
benefits of the modNt over the mod10 representations for the numbers 
in table Spp4 = 210? This is why when creating very large tables, unlike 
mod10 numbers where you would have to write in each number, you 
only have to write in the higher order digits of the left cells of 
horizontal rows and only write the lower order digits in the top cells of 
the red columns and other key numbers to reference changes in the 
number patterns. With this small amount of information one can 
create any size tablet and if interested in the value of any cell, quickly 
determine the value using the rows and columns associated with that 
particular cell. But more than this we are now able to start to 
understand the patterns of the prime numbers in the tables without 
actually writing down numbers.  

See below the completed n = 4 with Sppn = 210 table using modNt 
numbers. It is followed by two more tables showing the n = 4 table with 
all non-red columns removed using both the mod10 and modNt 
(called red column only tables) (Figure 5).  

Figure 5) n = 4; pn = 7; Sppn = 210; modNt number system . 

Note that this table follows the exact same structure as the mod10 table 
shown earlier. Notice again the symmetry around the ½ points of row 
1 (0211 modNt = 15 mod10) and of the table (1/2 point of the table 
is 3211 modNt = 105 mod10). Note the Dead Zones = DZn in which 
the only prime numbers are in row 1 (0010, 0011, 0021 modNt = 2, 3, 
5 mod10). These are already discovered primes from the Generator 
Function and have been “retired” since they are all factors of 30 and 
210 and will be factors of all future values of Sppn to infinity. They will 
never generate future prime numbers in the elements below them, 
however, the prime and relative prime numbers that they have 
generated will continue to generate more prime numbers until they are 
either discovered to be “false primes” by the natural process of 
elimination using the boundary conditions of the Generator Function 
OR they are discovered to be true primes and eventually retired. The 
right and left Dead Zones DZn maintain the symmetry of the tables. 
Eventually all primes or relative primes will be tested as they will sooner 
or later become less than the selection rule for discovering primes …. 
pn-1

2 < pi < pn
2 . The region pn-1

2 < pi < pn
2 is defined as the “Safe Zone” 

= SZn in table Sppn because it is the region in which only true primes 
will be found (the Generator Function selection rule). Although all 
discovered numbers less than pn

2 are true primes, we have already 
discovered all true primes in the prior table up to pn-1

2 so the criteria is 
to only discover new primes.  

Below find the red only column table for n = 4 mod10. The next photo 
uses modNt. Tables become far more complex with dozens of 
parameters that are used to measure their growth and properties of 
prime numbers, twin primes, gaps and related patterns (Figure 6). 

Figure 6) n = 4; pn = 7; Sppn = 210; modNt number system ; red 
co lumns only. 

CHAPTER 4 
CONVERTING BETWEEN Mod10 AND modNt NUMBER 

SYSTEMS 
It is relatively easy to convert between the two number systems and is 
necessary for many operations and understanding of numbers 
(especially large numbers). A note is to be conscious of the subscripts 
as we will be talking about tables using “n”, “n + 1”,  “n + 2”, “n – 1”, 
etc.  

Conversion from mod10 to modNt 
Given a mod10 number N = abcde… xyz where the letters represent 
decimal digits … we are going to use both a mathematical as well as 
visual approach to finding the properties of N 

1. Determine the largest magic number Sppn less than the
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given number (this corresponds to the highest value of 
row 1 of table Sppn+1 in which the number N lies) 

2. Divide N by the magic number Sppn and determine the
result A1 plus a remainder R1

3. A1 is the value of the highest order modNt digit (the
multiple of Sppn) added to the value in the top cell of the
table. The remainder R1 is the top number in the column
where the number would lie in the table Sppn+1 (R1 is the
value in row 1 of table Sppn+1 ; if this is a grey column the
number cannot be prime)

4. Next divide R1 by Sppn-1 resulting in A2 with remainder R2. 
5. A2 is the second highest order digit modNt.
6. Continue this process until the entire modNt number is

calculated = A1A2A3 … An+1

7. If there is a “0” it must be placed to hold the digit as with
any long division.

Example: N = 737,269,373 mod10 (see section below from table 2) 

Table 2 
Spp10 = 6,469,693,230 mod10 showing just rows 1, 2, 3, 4 and 5 
with the local rows and columns 

67,990,761 67,990,762 67,990,763 67,990,764 67,990,765 
291,083,631 291,083,632 291,083,633 291,083,634 291,083,635 
514,176,501 514,176,502 514,176,503 514,176,504 514,176,505 
737,269,371 737,269,372 737,269,373 737,269,374 737,269,375 
960,362,241 960,362,242 960,362,243 960,362,244 960,362,245 

The difference between numbers in rows is 1. 
The difference between numbers in the columns is Spp9 = 223,092,870 
mod10. 

1. Select Spp9 = 223,092,870 the first magic number less
than N.

2. 737,269,373 ÷ 223,092,870 = 3 + R1 = 67,990,763
3. N lies in table Sppn+1 = Spp10 = 6,469,693,230 in the

column with top number = 67,990,763. N lies in row 4
because you have added 3 times the value of Sppn to the
value in the top cell of the column 67,990,763 and puts
N in row 4 of table Sppn+1 = Spp10 . 737,269,373 = (3 x
Spp9) + 67,990,763

4. The highest order digit in column = A1 = 3.
5. Divide 67,990,763 by Sppn-1 = Spp8 = 9,699,690. 
6. 67,990,764 ÷ 9,699,690 = 7 + R2 = 92,933
7. The second highest order digit A2 = 7 and this number lies

in the table Spp9 which is the next lower table. 67,990,763
resides in row 8 and in column with cell value = 92,933 in
the top cell. Draw the section of the table that corresponds
to this. Your table section will have the number 92,922 in
the top cell and in the 8th row down will contain the number 
67,990,763. As in the sample table above draw a few
columns to the right and left of this column.

8. Divide 92,933 by Spp7 . But Spp7 is 510,510 which is greater 
than 92,923 therefore the third digit modNt A3 = 0. It
appears in row 1 of table Spp7 . 

9. Divide 92,933 by Spp6 = 30030 
10. 92,933 ÷ 30030 = 3 + R4 = 2,843 so 92,934 lies in table Spp7

in row 4 in the column with 2,843 in the top cell. A4 = 3.
11. Divide 2,843 by Spp5 = 2310. 
12. 2843 ÷ 2310 = 1 + R5 = 533 so 2843 lies in row 2 of table

Spp6 = 30030 in column with 533 top cell. A5 = 1
13. 533 ÷ 210 = 2 + R6 = 113 so A6 = 2

14. 113 ÷ 30 = 3 + R7 = 23 A7 = 3
15. 23 ÷ 6 = 3 + R8 = 5 A8 = 3
16. 5 ÷ 2 = 2 + R9 = 1 A9 = 2
17. 1 ÷ 1 = 1 + R10 = 0 A10 = 1
18. The modNt number is 3,703,123,321

Note that the modNt number still has more digits than the equivalent 
mod10 number but this changes as the “powers” of the modNt system 
are continually increasing whereas the powers of the mod10 system 
remain at 10 for every additional digit in the number. As one grows to 
larger and larger numbers the modNt numbers become much more 
efficient at representing large numbers. The value of having the tables 
is that all numbers that fall in non-red columns will not be prime. It is 
a simpler way of factorization than the brute force method and by 
simply locating a number in modNt in its column you can determine 
if it is or is not prime. The other value of the tables using modNt is 
that you do not have to fill in all the numbers in the entire table to 
locate and identify the ancestry of a number. The remainders R1 
through Rn+1 give the ancestry of the number. These are the numbers 
that were used to generate the final number 737,269,373 in mod10 
and 3,703,123,321 in modNt. They were the number values in the top 
cells of the columns where each ancestor was generated going back to 
0 the “alpha prime”. All numbers including prime numbers have 
ancestry to the alpha prime “0”. We are dealing only with prime 
numbers in red column only tables. All other numbers (grey columns) 
were eliminated. We will only be working with the red columns which 
contain numbers that are relatively prime to that table.  

Conversion from modNt to mod10 
Converting the same number back to mod10 use the following 
method. You will see this is the reverse of the process above. Note there 
are n+1 values of A and n + 1 values of Sppi starting with i = 0 through 
n.  

A1 x Sppn + A2 x Sppn-1 + A3 + Sppn-1 + … + An+1 x Spp0 

So to convert the number 3,703,123,321 modNt to mod10 as follows 
(all “digits” given in mod10 representation)  

3 x Spp9 + 7 x Spp8 + 0 x Spp7 + 3 x Spp6 + 1 x Spp5 + 2 x Spp4 + 3 x 
Spp3 + 3 x Spp2 + 2 x Spp1 + 1 x Spp0 = 3 x 223,092,879 + 7 x 9,699,690 
+ 0 x 510,510 + 3 x 30030 + 1 x 2310 + 2 x 210 + 3 x 30 + 3 x 6 + 2 x
2 + 1 x 1 = 737,269,373 mod10 the original number above.

Final exercise: draw the local table for the modNt numbers (the same 
table as above) and see how much easier the numbers are to identify 
and observe the changes from left to right in the rows and from top 
downwards in the columns. This at first might seem like a daunting 
task however if you understand the construction of the modNt 
numbers it should take only a few seconds. To the contrary in the 
mod10 table one has to use a calculator or a lot of manual labor with 
pen and paper to fill in each cell. Also notice the importance of 1 as a 
prime number and the value of its related Sppn value. Also note that 
all prime numbers will end in a single digit “1” and eliminates the 
quandary of what is the final digit of the prime number. Using modulo 
N number systems will all turn out differently and is nothing more 
than a quirk of each number system. The modNt number system cures 
this problem in that all prime numbers end with the same digit. 

Ancestry of twin prime pairs
The following examples show the ancestry of twin prime pairs. First 
begin with the twin prime pair (97841,97843) (numbers given in 
mod10). Using the method above of finding the ancestry (the values or 
Ri) to locate the unique path back to the alpha prime 0.  
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97841 ÷ 30030 = 3 + R1 = 7751 
7751 ÷ 2310 = 3 + R2 = 821 
821 ÷ 210 = 3 + R3 = 191 
191 ÷ 30 = 6 + R4 = 11 
11 ÷ 6 = 1 + R5 = 5 
5 ÷ 2 = 2 + R6 = 1 
1 ÷ 1 = 1 + R7 = 0 

Notice how this refers ultimately to the prime ancestor 1 and then to 
the alpha prime 0. The complete unique ancestry path is 7751, 821, 
191, 11, 5, 1, and 0. The equivalent modNt number is 3,336,121 
(derived from the factors resulting from the division by values of Sppi). 
Looking at the second number of the pair 97843, its ancestry path is 
7753, 823, 193, 13, 1. All of the corresponding numbers form true 
twin prime pairs (821,823), (191,193), (11,13) and (5,1) with the 
exception of (7751,7753) for which 7751 is ultimately found to be not 
prime (in a future table). So why is it included in the ancestry of this 
twin prime pair? Because in the table 30030 the number 7751 is 
relatively prime. The factors of 7751 = 23 x 337 are greater than the 
prime associated with that table’s Sppn-1 value of 11 and thus is in the 
4th row of a red relatively prime column and therefore carries to the 
next table to generate more prime numbers. In the red column tables 
the relative primes are as much a prime number as “real” prime 
numbers. They are needed to generate “real” primes until they are 
eliminated naturally by the boundary condition rules of the Generator 
Function. This realization, that relative primes are as “real” as real 
primes in their respective tables, is one piece of the 7 part rigorous 
proof of the Generator Function. 

7751 is finally “eliminated” in the table Spp9 = 223,092,870 with pn = 
23 with 7751 residing in row 1. Before 7751 is eliminated it was able 
to generate the following list of prime numbers: 37781, 97841 (the 1st 
of our twin prime pair) and many others in table 30030. It carried to 
the next 3 tables generating prime numbers and twin prime pairs with 
its pair 97843. As an exercise see now many other twin prime pairs you 
can find generated by the pair (97841,97843). You will find an infinite 
number of them if you continue long enough. This will lead to the 
formal proof that states that “Every twin prime pair will generate an 
infinite number of subsequent twin prime pairs”. Note that all the 
twin prime pairs in this generation path have the exact same ancestry 
going back along the same path to 0 and 1 as (97841, 97843). All of 
the new twin prime pairs in turn will continue to generate twin prime 
pairs including those which have one or both of the members as 
relative primes in a given table. Only when 97843 becomes the prime 
number associated with its own table Sppn will it cease to generate 
prime numbers as it will then fall into the DZn “Dead Zone” region. 
But the large number of twin primes that it has generated will continue 
on generating future twin primes all with ancestry back to 
(97841,97843) which have their ancestry back to the alpha prime 0 by 
their own unique paths. This illustrates another of the properties of 
the Generator Function that is equivalent to the Fundamental 
Theorem of Arithmetic in which every number has a unique set of 
prime factors. In the current case it is stated that “Every prime number 
has a unique ancestry of prime numbers going back to 0 the “alpha 
prime””. Of course included here are numbers that are relatively prime 
to the table in which they are found in this ancestral path since in that 
table they are as much a prime number as true prime numbers. There 
is a formal proof for this but this should be fairly obvious at this point. 
The same is true for every twin prime pair, and every prime pair of gap 
ki and every series or pattern of gaps no matter how large and complex. 
This will allow us to prove many previously unproven aspects of prime 
numbers and will show the method of finding any defined gap patterns 
to infinity (something that previously could only be accomplished in 
limited scope with super computers).  

I chose the twin prime pair (97841, 97843) for this example because it 
is part of a triple twin prime pair sequence. The other two successive 
twin prime pairs are (97847,97849) with a gap of 4 between these and 
the following member of the triplet (97859,97861) with a gap of 10 
between the original pair. The ancestry sequence of these are as follows 
(non-primes are noted with an *): 

(97841,97843), (7751*,7753), (821,823), (191,193), (11,13), (5,1)  
(97847,97849), (7757,7759), (827,829), (197,199), (17,19), (5,1) 
(97859,97861), (7769*,7771*), (839,841*), (209*,211), (29,1), (5,1) 

The ancestries all converge at (5,1) but this is due to different 
remainders. For example, 11 ÷ 6 = 1 + R 5 … whereas 17 ÷ 6 = 2 + R 5 
and lastly 29 ÷ 6 = 4 + R 5 so all ultimately converge to the same 
ancestor (5,1). This example shows that two relative primes 
(7769*,7771*) are able to generate true twin primes. These generate 
many other twin prime pairs in this table. Note in the 3rd row above 
(ancestry of (97859,97861)), that the twin prime pair (29,1) appears. In 
a given table the end prime number can wrap to column 1 to create a 
twin prime pair that in fact carries forward to generate future twin 
primes. This is from the second prime of pair (209*,211).  

211 ÷ 210 = 1 + R1 where R1 = 1 so technically by the rules it results 
in the pair (29,1). We have to refer to higher abstract concepts of 
Abstract Algebra Group Theory for a complete explanation of this 
issue.  

Part of the closure property of the tables is due to the same property as 
any mathematical “Group” in Abstract Algebra in which the elements 
wrap to maintain closure. Each table is considered a group under the 
single operator addition (+) and the reciprocal operator subtraction (-). 
There are many subtleties buried in the Nature’s Number System, The 
Generator Function and the Sppn Tables. We will only touch on the 
major properties here. An Appendix found in an associated file (too 
large to include in the body of this text) will list all the parameters and 
properties (Volumes II and III will continue this table of parameters). 

Example Table Spp5 in mod10 Number System (other chapters will 
show in modNt) 
Study the following table. This table was shown earlier, but below we 
will expand on the table properties. For clarity, the “raw table” is 
presented below without application of the “selection rules”. Then the 
same table will be presented with the selection rules presented and an 
exercise will be performed to generate the next Sppn Table for n = 6 
and Sppn = 30030. Note that the “raw table” contains all the numbers 
that are relatively prime to Spp5 = 2310. This includes all real primes. 
There are no other prime numbers. All the members of this table were 
generated from the rows of the prior table n = 4 with Spp4 = 210 which 
also carries the symmetry from the prior table. The importance of the 
Generator Function is seen as the tables continue to n = ∞, the 
counting functions of primes, twin primes, prime pairs of gap 4, 6, 8 
… and prime gap patterns generate all future prime patterns. There are 
more primes, twin primes, prime pairs of gaps 4, 6, 8 … and prime gap 
patterns than in the prior table. So not only does is this the basis for 
the solution to the Twin Prime conjecture and gaps of all sizes, but it 
also additionally creates a basis for the solution to the Goldbach 
Conjecture (Figure 7 and Table 2).  
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Figure 7) Twin prime conjecture and gaps o f all sizes. 

Table 3 
The text from the white boxes are reproduced in the following 
tables 

Note: columns 1 
and 209 form 
twin prime pairs 
examples are 
(419,421) & 
(1049,1051) 

Except for the center row the 
white boxes never show 

symmetry across the vertical 
center blue line which 
guarantees that if any 

relative prime is cancelled by 
a product, then the box 

located to the other side of 
the blue line will not be 

cancelled … this fact is used 
in proofs regarding 

conservation of gaps and 
primes 

Black boxes (products 
of pn+1 = 13) are not 

symmetrical around the 
center yellow star 

½Sppn = 1155 in this 
table but will be 

symmetrically located in 
their own table n=6 

where Sppn+1 = Spp6 = 
30030 around ½Sppn+1 = 

15015. 

Arrows show white boxes’ symmetry around center of table yellow star ½ Sppn 
= 1155 … all white boxes have a symmetrical partner compliment (take a 

second to assure this) … these same paired boxes are also equidistant from the 
yellow center star when counting up or down from the yellow star – this creates 
and assures the same symmetry in the next table since the white boxes will not 

carry to the next table and therefore will leave gaps in exactly the same 
locations to the right and left of center … all other product boxes will carry to 
the next table (along with all red boxes) as they are prime relative to Sppn … 
this assures that the property of symmetry carries into all tables to infinity. 

Note also that these compliment number pairs all add to Sppn = 2310 
and this gives rise to the understanding for why the values of Sppn 
provide local maximums to Goldbach pairs. Note also there are 
secondary Goldbach maximums at all integral multiples of each 
number Sppn . This is because of the wave nature and inherent 
symmetry of the prime patterns in the Sppn tables. This is an advanced 
topic for the next addition of Principles of Prime Numbers. This 
symmetry carries from one table to the next, assuring that symmetry is 
a property of all Sppn tables. In calculating the white boxes (products 
of pn with all other members of row 1) you only have to determine 
products of pn = 11 up to ½ Sppn (up to 11 x 103) since all the other 
products of pn with numbers of row 1 greater than 103 form products 
that are symmetrical around ½ Sppn which greatly reduces time as the 
tables become larger. Oddly enough this same type of symmetry occurs 
in DNA structures giving symmetry as an inherent product of DNA 
and the final product plants and animals.  

Assignment: in the table locate all products of relative prime numbers 
up to √Sppn = √2310 = 48.06 with relative primes of row 1. Notice 
how there are fewer and fewer products with larger relative primes (this 
leads to the study of Rppn Tables). Count the number of true primes, 
twin primes, prime pairs of other gaps (4, 6, etc.) and see how many 
twin primes have been generated. 

A final problem is to create the next table row 1 by stringing the rows 
of this table together (starting with row 1 up to and including row pn = 
11) except knowing that the white boxes (products of 11 and therefore 
not relatively prime to 30030) do not carry to the next table. If you are 
in doubt an easier assignment is the create this table from the prior
table Spp4 = 210.

This is the “red only” table which includes all the relative twin primes 
that were carried over from table Spp4 = 210. There are 48 red columns 
in table Spp5 = 2310 (the number of relative primes from the prior 
table carry to create row 1) with pn = 11 horizontal rows total. Notice 
how the products of 11 (white boxes) fall one and only one in each 
column. Note how they are symmetrical around the center point in the 
table (yellow star object in the center of the table showing some 
examples of symmetry with yellow arrows). For example, the white 
boxes 1133 and 1177 are equidistant from the center vertical line and 
center point of the table. The ½ point of the table is 2310 / 2 = 1155 
so 1177 – 1155 = 22 and 1133 – 1155 = - 22. This complement pair is 
± 22 from the center ½ point of the table. All of the true and relative 
prime numbers up to 2310 are contained in this table (except for those 
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smaller prime numbers already retired in the Dead Zone = DZ5 
contained in row 1 all prime numbers less than p5 = 11). 1133 + 1177 
= Spp5 = 2310 as do all the symmetrical white boxes (each white box 
has a symmetrical partner whose sum = 2310). Only the white boxes 
are removed when creating row 1 of the next table Spp6 = 30030. Since 
the white boxes that removed are symmetrically stationed around the 
center ½ point (in addition to all red boxes that are relative primes) all 
carry over cells values will be symmetrical located around the center 
point and therefore the symmetry carries to the next table and all future 
tables. Symmetry is a fundamental property of the prime tables that is 
carried from table to table and tells us a great deal about the 
distribution of the prime numbers as well as how many prime numbers 
are in a given table.  

This table has only the products of 11 (white boxes) and 13 (black 
boxes) noted for simplicity but to complete the determination of all 
true prime numbers in this table one has to multiply all prime numbers 
less that √2310 = 48.06 by all the relative and true primes of row 1 
(that would include all products of row 1 with the primes up to 47). 
Here is where we also encounter an issue called “duplicate products” 
in which some products duplicate the black boxes in the table. For 
example, 11 x 169 = 1859 as does 13 x 143. This is important when we 
develop equations for the number of products that will eliminate red 
cells in the tables (so as to not over count the number of products). 
This is an advanced topic that must be understood in the solution to 
the Twin Prime Conjecture.  

There are two processes occurring here simultaneously. First, the 
Generator Function is discovering prime numbers in groups with all 
red cell numbers less than pn

2 (the square of the nth prime number) 
being confirmed as “true” prime numbers and then being used to 
generate future tables. This process is self generating and continues 
without any help. The second and equally important process is to 
complete each table discovering all the true prime numbers in the 
table. This is then used to create parameters that represent the 
properties of each table and allows us to determine the total number 
of primes, twin primes, prime pairs of all gap sizes, gap sizes and dozens 
of other relevant parameters. The understanding gained from this 
process allows the creation of equations that can be generalized to 
make exact predictive analysis of the primes, gaps, etc. This will be the 
basis of the proofs by induction. We are building tools needed to create 
proofs by induction.  

Remember that the prime numbers are calculated and determined in 
larger numbers than are required to finalize a given table so we now 
have a method of determining the number of true primes, true twin 
primes and all other patterns and gaps up to and including the largest 
gap discovered in the table. The ability to predict the same in the next 
table is the basis for the proofs by Induction. Notice that √Sppn = 
Sppn

1/2
 (= the square root of the table’s magic number) is an essential 

parameter. It determines which prime numbers are included in the 
products to determine all true prime numbers in a given table. This 
exponent of ½ will come into play in determining the density of primes 
based on the Generator Function and now gives a visual interpretation 
based on the Sppn Tables include all patterns of prior tables including 
their ½ points and symmetries to be carried forward into all future 
tables (these also carry forward from the prior tables to the ½ points of 
integral multiples of Sppn … a subtle but amazing property … that is, 
the wave patterns of the prime numbers are also apparent around 
multiples of Sppn ).  

The tables are reduced to just the red columns since all the prime 
numbers are contained in these and only these columns. There is no 
need to consider any other part of the full table. We work from the 
beginning by extracting the red columns and work only with them. All 
other columns have non-relative prime values in the top cells of the 

column and therefore when adding Sppn-1 to each (to create the cell 
values below in that column) they result only in non-prime numbers. 
One of the great powers of the Table method of demonstrating the 
properties of the Generator Function is that only the red columns are 
used … all prime numbers are contained in the red columns. Eventually 
we will isolate twin prime only columns or gaps of other sizes. 

Note the arcs showing the symmetry in the table to the right and left 
of the center point above row 1. Since the white boxes (one in each 
column) eliminate all the products of 11 in this table, all the remaining 
red and black boxes move to create row 1 of table 30030. One can 
imagine that the white boxes take one cell from each column so that 
would be the equivalent of removing one complete row. All the 
remaining cells are relatively prime to 2310 which has as its factors all 
prime numbers up to and including 11. There will be a total of 480 red 
cells in 11 rows transferring to create the next table which will therefore 
have 480 red columns.  

The formula for the number of columns in the next table is equal to 
the number of relative primes of the prior table. This is an example of 
the analytic nature of the Generator Function and its visualization in 
the tables. The study of formulae leading from a table Sppn to the 
subsequent table Sppn+1 is a formidable job. 

An appendix is dedicated to defining the table parameters and 
equations. With these equations we can 1) begin rigorous 
mathematical proofs using induction, 2) develop an equation for each 
table that will predict prime numbers to infinity using the repetition of 
the wavelength Sppn (of which n6 ± 1 is the simplest of examples for 
Spp2 = 6), 3) determine prime density within the table and develop 
upper limits of prime density because it is now understood that with 
each successive table (although the size of the tables grows faster than 
exponentially and although there are more primes and prime pairs of 
gap N in every succeeding table) the Generator Function reduces the 
number of future primes with every iteration in a given table’s 
wavelength pattern and therefore proves that there is a monotonically 
decreasing number of primes with increasing wavelength Sppn (adding 
to the Prime Number Theorem and other theorems that deal with the 
density of primes).  

Item 3) above seems like a contradiction at first but this is correctly 
stated and requires some study to understand what this means. Each 
table is much larger than the prior table growing faster than 
exponentially and each table has more primes and other prime patterns 
(e.g. twin primes) than the prior table. However, each table Sppn is then 
used as a wavelength and all of the relative prime numbers that were 
discovered in this table form what we called in “Calculate Primes” a 
“comb” with the “teeth” of the comb being the relative prime values 
discovered in the table. It is a series of relative prime numbers 
symmetrically placed around the ½ point of the table. The pattern in 
this table will generate all future prime numbers using a wavelength 
Sppn . This is a LINEAR projection to infinity in integer multiples of 
Sppn therefore this defines all of the future prime numbers to infinity 
and is linear (increasing in integer multiples of Sppn ). Any numbers 
not found in this repeating “comb” will not be prime. What 3) is 
stating is that with each iteration of the Generator Function, the next 
iteration modifies the prior table’s “comb” reducing the population of 
“teeth” in the “comb” and therefore as viewed from a linear 
progression of the “comb” of a given table, being reduced by the next 
iteration of the Generator Function … assures that we know where all 
the primes will be (found within the members of this comb as the comb 

repeats to infinity with wavelength Sppn ). This is an example of the 
many subtle properties of the Generator Function, Sppn Tables and 
Nature’s Number System.  
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One final example of the simplicity and meaning of modNt numbers 
see the following. It will become apparent that the prime numbers are 
not random lottery numbers but a complete number system with 
ancestors and descendants. Here is the sequence of ancestry of twin 
primes in mod10 (97841,97843), (7751*,7753), (821,823), (191,193), 
(11,13), (5,1) and here is the same sequence modNt 
(3336121,3336201), (336121*,336201), (36121,36201), (6121,6201), 
(121,201), (21,1). Look at the first numbers of the pairs in descending 
order modNt. They are 3336121, 336121, 36121, 6121, 121 and 21. 
Prime numbers are generating prime numbers and each digit has 
meaning. You simply remove the higher order digit (or if ascending 
add the higher order digit). This gives the complete ancestry of the 
number fully visible in the structure of the number using modNt. Base 
10 or other modulo N numbers do not offer any semblance of order. 
As previously noted, the mod10 or other modulo number systems lack 
meaning relative to prime numbers and have been a hinderance to 
their understanding. The next paper based on Vol II of Principles of 
Prime Numbers will go into more detail on this and other aspects of 
the modNt number system.  

The * indicates composite numbers in the sequence above. They are as 
valuable as real primes since they are relatively prime in the tables from 
which they are found. That is a fundamental aspect of the generation 
of primes, the relative primes in a given table are as much a prime 
number as “real” primes. When their usefulness in generating other 
future prime numbers is expended (in their own Sppn table where they 
are no longer relatively prime), they disappear and literally were the 
“missing links” necessary to generate the complete list of prime 
numbers.  

CHAPTER 5 
PHYSICAL DIMENSIONS OF Sppn TABLES

One aspect of the tables which requires special examination is the 
physical dimensions of the tables. They grow in length (horizontal) very 
rapidly but not so rapidly in depth (vertical). For example, a table for 
n= 10 with pn = 29, if the table cells (that contain the numbers) are one 
centimeter by one centimeter, the table is then 29 centimeters in height 
(= pn), but the number of cells in row 1 Sppn-1 is 223,092,870 
centimeters long = 2230.92870 kilometers long. Any time we deal with 
large numbers there is an inherent “fear of flying” because with prior 
number systems, large numbers have no meaning. The Nature’s 
Number System will change this to an excitement that now large 
numbers are not only manageable, but their extension to infinity will 
also be understandable. We do not have to calculate all these numbers, 
but unlike other mathematical systems, we will be able to understand 
them because of repeatable patterns.  

Below is the same table from Chapter 1 showing the first few tables for 
n = α (the alpha prime table) to n = 4. It is not obvious from these first 
tables that they in fact grow so fast. This is one of the powerful aspects 
of the Sppn tables. We typically view prime numbers (as well as all 
numbers) progressing outward linearly along the number line. 
Mathematicians view the prime numbers as diminishing in numbers 
with increasing size, and even more so the twin primes and other more 
complex prime patterns. This view of numbers in fact has hindered the 
true understanding of prime numbers for over 2500 years since they 
were first defined by the Greeks. To the contrary, the number of primes 
and other complex patterns grow larger with successive table (for each 
Sppn+1 value). The proof of this is what allows new insight into the 
structure of numbers, and their building blocks … the primes.  

It is probably obvious to mathematicians familiar with prime numbers 
as I discuss the “greater than exponential growth” of the tables but for 
others not familiar with fundamental prime number proofs, one of the 
best known relations regarding primes is that their “density” or average 

occurrence diminishes on average as a logarithmic function. Thus if 
you graphed the occurrence of prime numbers along an exponentially 
scaled X axis, you would have a level number of primes per unit of 
measure. But since the Sppn tables grow at faster than exponential 
rate, this in a sense “overpowers” the logarithmic decline in the 
presence of prime numbers giving an ever increasing number of primes 
in each future table. This holds true also for twin primes and other 
prime pairs of larger gaps as will be shown in the final proofs dealing 
with these issues (Figure 8).  

Figure 8) Relation between the Sppn and Rppn . 

Besides the much more than exponential growth of the tables, we also 
notice other interesting aspects of the relation between the Sppn and 
Rppn tables (Rppn tables will be defined in later work but essentially 
are the tables containing the products of prime and relative prime 
numbers from row 1 of an Sppn table). For example, an important value 
in determining the number of products in the Rppn table is the square 
root of Sppn = √Sppn. This sets the maximum value of prime number 
that can be used to build products to cancel cells in the Sppn table in 
the final determination of how many true prime numbers there are in 
that particular table. As the counting variable n increases, the value of 
√Sppn grows more slowly than Sppn-1 (the sequential prime product of
the prior table). √Sppn therefore becomes closer and closer to the left
side of row 1. In other words, remembering that the length of row 1 in
table Sppn is equal to Sppn-1 , the ratio √Sppn / Sppn-1 becomes very
small very fast. This means that the number of products becomes more 
and more limited with increasing table size. Although this is not the
only factor, once again this is an essential observation that helps in
understanding the growth of the prime numbers, twin prime pairs, and 
patterns of gaps, as they generate future primes, twin primes and the
patterns of gaps in future tables. It is important not only to understand 
the numbers of products that cancel cells in the raw table, but how they 
are distributed evenly and symmetrically throughout the tables.

The following are examples taken from a table of values showing the 
growth of table size Sppn with increasing “n”. Clearly these tables are 
not manageable from a practical stand point. But then again, all the 
numbers we use here as examples are small when compared to infinity. 
Note also that we will only be using the red columns containing only 
relative prime numbers, which is only a portion of the tables. The plan 
is to create understanding for the great region between our 
comprehension and infinity. The importance here is that we are able 
to build a mathematical structure to predict the size of future tables 
and the number of products, and therefore cross into the realm of 
analysis that has never existed previously to determine the number or 
primes, twin primes, and other patterns as the tables are created from 
prior tables. (NOTE: the table dimensions below are based on 1 cm x 
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1 cm cell sizes each of which contains just one number … for simplicity 
all numbers below are in mod10). The formula for the number of 
columns in a given table = # columns in the prior red table (not 
including 0 and Sppn) x (pn-1 - 1). As an example, n=4 table (prior page) 
has 8 red columns and 7 rows (= p4). So the formula for the number of 
columns in table n = 5 is 8 x (7-1) = 48 with 11 rows. The number of 
columns in table n = 6 is 48 x (11-1) = 480 with 13 rows. The following 
table n = 7 will have 480 x (13 -1) = 5760 columns with 17 rows. The 
ability to calculate these and other parameters from one table to the 
next gives rise to the proofs by Induction. Note in the following 
numbers the values of Sppn and Sppn-1 do not represent the numbers 
of rows and columns in a “red” tables (prime and relative prime only 
tables). The red only tables have far fewer elements (the last values 
given below in bold type). Note how many primes are discovered in the 
few tables up to n = 13.  

This table for n = 13 is about 5 times the distance from earth to the 
sun, however the red column only table (containing only primes and 
relative primes) is much smaller but still contains billions of prime 
numbers).  

The concept of infinity and understanding the building blocks of all 
numbers being calculated directly in the tables may be difficult to 
imagine since it is a foreign concept on first sight. The realization that 
standard methods do not give insight into numbers no matter how 
large they seem, the only logical avenue of pursuit is in the processes 
developed in this paper to create a system by which proofs by Induction 
are possible. This requires a system by which one group of primes is 
directly calculated from a prior group (the process which generates 
subsequent groups) being the same leading to the processes needed for 
Induction proofs.  

When translated into modNt, the values of Sppn are as follows. 

n = 6; Sppn = 106 = 1,000,000 (compare to mod10 = 30,030) 

n = 10; Sppn = 1010 = 10,000,000,000 (mod10 = 6,469,693,230) 
It is between n = 10 and n = 11 where the modNt numbers become 
more efficient at representing a given number. Note how n = 13 modNt 
has fewer digits below.  

n = 13; Sppn = 1013 = 10,000,000,000,000 (mod10 = 
3,042,632,473,527,210) 

n = 169 Sppn = 10169 (with 169 modNt digits compare to the mod10 
number with 422 digits = (see top next column) 
2002362020904452815951174109202611157572109628795203328
0890216911029466309299244261280131263405759302102973368
2743921175847121545541478527825219234137613370618124449
2260981760390201481462526087798387011456345464156546841
7567572976451068314416743541124863024839827028842502970
1543248542691881225071572605757942157032719979869504478

5787703752041026949623508706278256040113010362821434482
9307099367702771821422466053941751470 

See the Appendix end of this text which lists Sppn up to n = 169. 

The progression of tables continues but the greater effect of the modNt 
number system is that by just looking at the number you can tell the 
entire ancestry of the number because every digit translates into a value 
that existed at the top of the column where that number was generated 
or “born” from an ancestor that is unique. Each number is unique and 
has a unique ancestry and relation with its siblings, cousins, aunts and 
uncles, parent, and ancestors. Likewise, every twin prime is generated 
from a lineage that brought it into existence. Since the gaps in a given 
raw table are continually being broken as products cancel non-prime 
cells, the twin primes that are continually generated in greater and 
greater numbers in successive tables are set as ancestors of an infinite 
number of future twin primes (there can be no others). Twin primes 
are not random or just there by chance, they are generated by a distinct 
lineage and have a distinct position in a table, with each table having 
more primes and twin primes than the previous table. All prime gaps 
that have already been generated and prime gap series are represented 
in each successive table and continue to generate more offspring to 
infinity. This occurs because the relative primes and their patterns carry 
to each new table and carry the patterns with them. The proof of these 
statements is based on the understanding of the growth of the tables 
with increasing “n” which are based on basic mathematical principles 
of common algebra. 

Lastly, the “fear of flying” with huge numbers and tables that extend 
past the sun may be a bit overwhelming to some. The gain here is that 
we never have to write these out because long before we get to these 
huge tables, we are already able to create mathematical expressions for 
the generation of table parameters and thus enter a new universe of 
pure mathematics to understand the prime numbers in small distinct 
groups … and create proofs by Induction.  

CHAPTER 6 
BUILDING Rppn TABLES 

The Rppn tables are simply the representation of the products or row 
1 of a Sppn table. After the Generator Function has created the new 
nth list of prime numbers (all red column numbers pi such that pn-1

2 < 
pi < pn

2), created the next sequential prime product Sppn+1 with the 
rules being followed to create the next table (n + 1 table) … the second 
process takes place of locating all prime numbers and relative prime 
numbers associated with the nth table. This is done by first taking the 
square root of Sppn ( = √Sppn) which is the upper limit of factors whose 
products will fit within the limit of the Sppn table. In the first tables up 
to n = 4, this value is not in row 1, however for n = 5 and thereafter 
the square root falls in row 1 and with each increasing table becomes 
closer to the left side of row 1. This is important to note as the effort 
to determine the number of products that eliminate red cells in each 
table is central to determining the number of real primes, twin primes, 
and other parameters in each table.  

First we will review the n = 4 table and then the table that is created 
from this table with n = 5. With these understood it will then be 
possible to create the Rppn tables (Figure 9).  
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Figure 9) n = 5, multiply p5 = 11 with all o f the members o f row 1 to  
get the white boxes in table n = 5. 

Note how the n = 4 table creates the n = 5 table. From the n = 4 table, 
take the successive rows 1, 2, 3, 4, 5, 6, 7 in order and stretch them 
into a single line (removing the repetition of 30, 60 etc at the beginning 
and end of each new row). This is row 1 of table n = 5 complete with 
the symmetry found around the ½ point = 105. See the row 1 numbers 
of table n = 5 above. Next add the n = 4 value of Spp4 = 210 (which 
becomes Sppn-1 in table n = 5 … the top right hand corner cell) to the 
values of the top cells of table n = 5.  

Here is where the Rppn table comes in. In table n = 5, multiply p5 = 11 
with all of the members of row 1 to get the white boxes in table n = 5. 
Next multiply all of the row 1 elements with themselves and all 
succeeding elements of row 1. You will find the following. Pn = 11 can 
be multiplied by all members of row and with the products all 
contained within the table. However the next relative prime (and also 
real prime) 13 has to stop short of the last member or row 1. Find the 
maximum element of row 1 that 13 can be multiplied with to remain 
in the table using the simple equation Sppn / 13 = 2310 / 13 = 177.69 
… for the next element of row 1 (17) the maximum pairing will be 2310 
/ 17 = 135.88 and so on for all elements of row 1 up to √Sppn = 48.06 
. The analysis of this product structure is what will provide the 

equations needed to analyze the complete prime number and gap 
structure of each table. The result of this is presented in the Rppn table 
below (see accompanying files for better resolution picture) (Figure 10). 

Figure 10) Sppn tables, Rppn tables generate from one table to  the 
next. 

Like Sppn tables, Rppn tables generate from one table to the next as 
shown in the following photo. These allow the parameters of one table 
to be determined from the prior table which is the basis for the 
equations that create future table values from prior tables. This was the 
goal in searching for and creating these tables to allow proofs by 
Induction. Without these building blocks there is no basis for 
induction proofs. As with the Sppn tables, the Rppn tables can 
eliminate all but the red cells (Figure 11).  

Figure 11) Basis for determ ining the number o f real primes. 

These tables become very complex but are the basis for determining 
the number of real primes, twin primes, gaps of all sizes, etc. One of 
the issues is that there are duplicate products but there is a solution to 
this. These tables will be discussed in future chapters this was a first 
pass introduction.  

CHAPTER 7 
RULES FOR TABLES AND CREATING TABLES 

The discussion of creating tables is based on the structure of numbers 
using the McCanney Generator Function and modNt number system. 
The tables are simply a visual representation of the Generator Function 
and allows equations to be constructed to generate one table from the 
prior table. The Generator Function, its boundary conditions and 
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selection rules not only generate new prime numbers based on prior 
prime numbers but also forms a mathematical system with properties 
of - closure – completeness – symmetry – reciprocity – wave functions 
- and allows the prime numbers to be classified in bounded algebraic
Groups. One set of parameters of one table generates (using formulas
developed based on the Generator Function) the parameters in the
following table and this structure allows for proofs using traditional
mathematical techniques such as Induction.

There are 2 basic table types called Sppn (Sequential Prime Product 
table “n”) and Rppn (Relative Prime Product table “n”). The table 
generation RULES are based on mathematical proofs and allow all 
related parameters for table “n” to be generated from the prior table 
“n-1” using just the gap kn between pn and pn-1. This gap size is 
determined using the results of the Generator Function which 
generates increasingly larger groups of true prime numbers with each 
iteration assuring that the process will continue to infinity (e.g. assuring 
that there will always be the next prime to generate the next Sppn 
value).  

1) Future Tables Sppn+1 and Rppn+1 and all parameters
associated with these tables are derived from prior tables
Sppn and Rppn based on equations and depend only on the
gap kn+1 = pn+1 – pn and all can be traced back to the first
table n = α. The prime numbers and associated tables are
derived directly from the starting point of the Peano
Postulates using the Generator Function and selection
rules.

2) All primes and parameters of tables Sppn can be traced back 
to the first table of the alpha prime 0 with counting integer
n = α.

3) Theorem – The Fundamental Theorem of Prime Numbers
(equivalent to the Fundamental Theorem of Arithmetic) –
Every prime number has a unique ancestry of primes which 
may include numbers that are relatively prime in the table
Sppn leading back to the original alpha prime “0”. This is an 
alternative way of expressing the new number system
“Nature’s Number System”. 

4) Corollary – The Fundamental Theorem of Prime Gap
Ancestry - all twin primes  (gap kn = 2), prime pairs of any
gap size (kn = 2, 4, 6, … ∞) and any pattern of gaps likewise
have a unique ancestry leading back to the first incidence of 
that gap or gap pattern. This leads to the following theorem.

5) Corollary– The Fundamental Theorem of Gap Generation
– All gaps of size ki will continue to be generated in future
tables because the relative primes of table Sppn carry to table 
Sppn+1 and there is in fact an increase in the occurrence of
gap sizes in each successive table. Each twin prime pair will
generate an infinite number of future twin prime pairs. 
Every prime pair of gap = N will generate an infinite number 
of future prime pairs of the same gap. This is called the
“Conservation of Prime Gaps” Theorem. This also has a
corollary which states that “if there are relatively large gaps
in the list of real prime numbers, then there will be
smaller gaps in the region of the large gap to conserve the
average gap size in the region.” Another way of stating this
is that the distribution of products that cancel potential
prime numbers may be “grouped” or “clumped” into
regions which will create larger than average gaps, but this
will be compensated by smaller gaps in the area. This is
important in understanding the distribution of prime
numbers in problems such as the Goldbach Conjecture as
well as the Max Gap tables. The following are the Rules

dealing with the mathematical properties of prime numbers, 
all parameters of prime number tables and tables Sppn and 
Rppn .  

6) Direct Calculation of the Prime Numbers – the McCanney
Generator Function – All prime numbers are calculated
directly in groups using the Generator Function and
boundary conditions starting with just the number “0” and
addition and subtraction. Multiplication and division are
never used. Prime numbers are generated in every
increasingly larger groups upon each iteration of the
Generator Function. The Generator Function is neither a
Sieve, multiplication table (“odd man out”) nor brute force
division technique … but is a formulation that directly
calculates prime numbers in groups and allows for the other 
mathematical properties (described below).

7) Definition of Prime Numbers – the use of the Generator
Function provides a new definition for prime numbers and
a set of new criteria for determining that numbers are prime 
(primality) which does not depend on the traditional
definition of primality (that a number is divisible by only
itself and “1”). The new definition of prime numbers states
that they are all numbers which are discovered by and follow 
the boundary conditions of the Generator Function starting 
with the alpha prime 0. The traditional definition actually
has been a hindrance in the true understanding of the prime 
numbers and numbers in general.

8) Nature’s Number System – A new natural number system
modNt is created based on a counting system in which the
values of the Sequential Prime Products Sppn are used in
place of powers of 10 (mod10) or other fixed modulo
systems. The new number system not only gives information 
about the number including its ancestry in the building of
the number system, but also provides an understanding of
prime numbers that allows for proofs by Induction and
other insights never realized before. The base 10 (mod10)
number system is good for many applications in
mathematics and commerce but is a hindrance to
understanding prime numbers and the natural structure of
numbers in general.

9) Predictability – with each iteration of the application of the
Generator Function a wave “comb” of wavelength Sppn is
created which modifies all previous wave forms of prior
tables. With each iteration of the Generator Function one
further refines and limits the possible numbers to infinity
which can be prime numbers. Specific equations are
developed that define which numbers can be prime and
which ones will not be prime (the waves repeat to infinity). 
See other rules below regarding wave nature of prime
numbers. None of the other “methods” of determining
prime numbers have any predictive capability and this alone 
sets the Generator Function apart from any prior attempts
at understanding.

10) Prime Number Density Theorem – The prime numbers
form a monotonically decreasing set of numbers with each
application of the Generator Function and its associated
wave and it provides an exact determination of where Rogue 
Waves or groupings of primes and prime gaps will occur.
This provides not only an upper limit to prime numbers but 
also tells exactly where to expect patterns. The traditional
method of calculating the density of primes using the Prime 
Number Theorem (PNT) only gives a general upper limit to
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prime numbers in an abstract region of the number line but 
does not have any specific predictive properties for given 
primes or groups of primes. The Generator Function 
provides specific information about any prime number or 
groupings of numbers or gaps and predicts where these 
combinations occur. 

11) Sequential Prime Product. The tables Sppn and Rppn can
be reduced to only the relative prime numbers and columns 
“0” and Sppn-1 which are included to show the structure of
the tables. The prime numbers are discovered completely
for each table Sppn and do not require any other numbers
(unlike any other method of discovering prime numbers).
The Sequential Prime Products have been known in
mathematical literature but no one previously understood
the connection to directly calculating the prime numbers.

12) The tables Sppn are Groups by the traditional mathematical 
definition in Abstract Algebra. The following are just some
of the properties of the tables and related number system. 

13) Closure – Every table Sppn is closed. Closure means that the
relative and true primes (all prime relative to Sppn ) form a
closed Algebraic Group under operations of addition and
the inverse operation subtraction. This group does not
include any other numbers (numbers not relatively prime to 
Sppn ). There are two forms of the tables Sppn (Sequential
Prime Product of the nth prime) and Rppn (Relative Prime
Products of the nth prime) … A) full tables include all
numbers inclusive between “0” and Sppn and B) the
“Relative Prime Number Only” tables (also referred to as the 
red column tables since red is the color of cells which are
relatively prime with respect to Sppn) which include only the
columns “0”, all relative prime columns from the prior table 
Sppn-1 which comprise rows 1 through Sppn-1 -1 of table Sppn

(then creating all members of the columns by adding
multiples of Sppn-1 ) and column Sppn-1 which maintains
table symmetry with column 0 . Columns “0” and Sppn-1 are
part of the Group although they do not contribute to prime 
number generation. The properties refer to the second type
“Prime Number Only” tables. Every table identifies and
distinguishes between relative primes which are true primes 
and those which are non-primes. Every table identifies all
true times within the table. All relative primes including
true primes and non-primes which are relatively prime (after 
removing all multiples of pn) with respect to Sppn move on
to the next table Sppn+1 to create the next n+1 table. See the
additional “Appendix – Introduction to Self-Generating
Primal Groups” which gives a brief outline of addition for
the Group which will be further developed in Volumes II
and III of this set.

14) Completeness - All numbers are located in the tables and
are ultimately classified as either a prime or non-prime
number but within a given table Sppn the mathematical
structure includes both true primes and primes relative to
Sppn . All relative and real primes are identified in every
table relative to the Sequential Prime Product for that table.
Since all numbers from “0” to Sppn are included in the
process, the process is complete and thus identifies all true
primes and all numbers that are not true primes. The
process is complete and therefore the mathematical
structure has the property of Completeness.

15) Symmetry – The prime numbers relative to table Sppn are
symmetrical around the ½ point of row 1 and the ½ point

of the table. The symmetry found in row 1 of table Sppn 
comes from the symmetry found in and carried forward 
from the prior table around the center point of the prior 
table ½ Sppn-1. All tables exhibit the property of symmetry 
around ½ Sppn-1 (the center point in row 1) as well as ½ Sppn 
the center point of the table Sppn . Since the relative primes 
of table Sppn as well as the products from column 1 of table 
Rppn are all symmetrical around the ½ points of the table, 
and because these are the numbers that move to create row 
1 of the next table, this symmetry is universally carried from 
one table to the subsequent table. Therefore, all tables past 
present and future show the same symmetrical structure 
around these ½ points. There are other symmetries to 
numerous to mention here but one other used extensively 
are symmetries around the points ½ m Sppn-1 which for 
example are used in the proof of the Goldbach Conjecture.  

16) Reciprocity – All future prime numbers are created by
building from currently existing prime numbers and
likewise by reversing the process of the Generator Function
the ancestors of any prime number can be uniquely
determined. Thus, there is a reciprocity in the process and
the prime number system exhibits the mathematical
property of reciprocity.

17) Wave Nature of Prime Numbers – One of the most unique
and characteristic aspects of the Generator Function is the
wave nature of prime numbers. This proves conclusively
that the patterns found in prime numbers are not random
but are calculable and predictable, and additionally allows
one to develop equations that can predict whether any
future number can be prime or not. Once again, this sets
the Generator Function and Direct Calculation of Prime
Numbers apart from sieves, multiplication tables (missing
number are primes), statistical mathematical analysis and
brute force super computer computational methods which
have no predictive abilities at all. It also shows why the many 
classifications and attempts at estimating prime numbers
such as Mersenne Primes are only partially successful. Each
table Sppn has associated with it a wave pattern of primes
relative to Sppn-1 called a “comb” which repeats to infinity
with wavelength = Sppn-1 . Within each table is contained all 
the prior infinitely repeating wave functions of all prior
wavelengths, with each one modified by the subsequent
wave patterns. Each wave pattern modifies the prior wave
function. This is why we see patterns of prime numbers
emerge in the prime number tables only to fade with other
patterns emerging to fade away again. This is why we see
“rogue patterns” of both primes and prime gaps in the prime 
number tables (these are the wave patterns beating one on
the other), and more so this is why we see symmetrical
patterns around the Sequential Prime Products Sppn in the
+ and – directions as well as around the multiples of Sppn

all the way to infinity. The wave nature along with the
symmetry factor is the reason why we can begin at any Sppn 

value and move in the negative direction and begin at “0”
and find the exact same prime patterns of gaps. Are prime
numbers random? These insights prove that prime numbers 
contain great order and are anything but random. 

18) Equations for parameters of table Sppn+1 are derived and are 
dependent on only the prime gap kn+1 = pn+1 - pn using the
values of the same parameters found in table Sppn . These
include the number of relative primes, true primes, twin
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primes and prime pairs of gaps that have been discovered 
up to and including this table and a very long list of other 
parameters.  

19) Proofs by Induction – The classification and discovery of
primes using the Generator Function and tables plus the use 
of equations that create the new parameters for subsequent
tables allow for proofs by Induction.

20) Primality - Selection Rules for Prime Numbers – Selection
rules define those numbers that remain after the most
recent iteration of the Generator Function and are as
follows. There are 2 rules for selecting prime numbers from 
a table Sppn. A) the first criteria also known as the “weak
rule” states using the Generator Function criteria that all
relative prime numbers ≤ √Sppn are prime. Since with each
table Sppn the primes are “discovered” in groups up to
√Sppn and the prior table discovered true primes up to
√Sppn-1 , the new group of primes discovered by table Sppn 

are pm such that √Sppn-1 < pm < √Sppn with each successive
group being larger than the last group (in fact much larger).
This property of the prime number discovery “Weak
Selection Rule” coupled with the fact that prime numbers
(and twin prime pairs, etc.) generate future primes (and twin 
prime pairs, etc.) allows for the proofs of previously
unsolved problems regarding prime numbers. B) The
second criteria also known as the “strong rule” states that all 
relative prime numbers in table Sppn between pn and pn

2 will
be prime since there can be no new products in this region
(all products in this region were eliminated in prior tables
with smaller prime number tables). Therefore, no new
products can exist in this region. For n < 6, pn

2 is greater
than √Sppn and can be used in this region to discover true
primes but for n ≥ 6, pn

2 is less than √Sppn where the strong
rule is used. These selection rules constitute the new
definition of prime numbers and you can see that it has
nothing to do with factorization nor being “only divisible by 
itself and 1”. Only the strong rule can be used but there is a 
subtle reason for including the weak rule (an advanced topic 
not covered in this volume). The two definitions result in
the same set of prime numbers as the traditional definition
of prime numbers, but with the addition of 0 and 1 which
are both essential in the complete set of primes including
negative and complex prime numbers. Without 0 and 1 the
new structure of prime numbers would not be possible,
remembering that 0 is the alpha prime. With the new
definition comes understanding, predictability of the
primes to infinity and the many other mathematical
properties that make the prime numbers a closed
mathematical structure and last but not least, the
development of the prime numbers as a complete
autonomous number system starting with Peano´s
Postulates and the McCanney Generator Function along
with the related boundary conditions and selection rules.

21) Non-Randomness of Prime Numbers – All of the above
mathematical properties of prime numbers show that
primes are not random nor pseudo-random as previously
believed but constitute a highly organized set of numbers
(independent of all other numbers) with mathematical
properties. The structure of the primes is recognizable using 
the properties of the Generator Function that puts the
prime numbers into manageable groups. Both prime and
relative prime numbers in a given table Sppn generate future 

prime numbers, prime number gaps and gap patterns, 
likewise, all prime numbers are in families with ancestors 
going back to the alpha prime “0”, with parents, siblings, 
cousins, ancestors, and descendants. There is an infinite 
number of equations that are generated using simple rules. 
There is a single equation to predict all prime numbers from 
each table n (n = α, 0, 1, 2, 3, … ∞) and there are equations 
for a given table n which predict all twin primes subsequent 
to that table as well as equations for all gaps and gap 
patterns. Primes, twin primes, gaps, and all patterns are 
generated using just addition of previous primes. The 
primes exhibit properties of closure, completeness, 
reciprocity, symmetry and wave nature. The equations 
generated by rules within each table create the waves that 
not only generate to infinity but also to negative infinity. 
The current volume does not deal with negative prime 
numbers nor complex prime numbers both of which are 
advanced topics for the next volumes. This shows complete 
order. The primes are NOT random but a well ordered 
mathematical structure including their own number system 
modNt. 

22) See the appendix on Parameters for more information on
structure of the prime numbers.

CHAPTER 8 
INTRODUCTION TO SELF-GENERATING PRIMAL 

GROUPS & PEANO´S POSTULATES TO GENERATE THE 
PRIME NUMBERS 

This is a brief introduction to the topic of Group Theory related to the 
tables Sppn showing the process of addition (and inverse process 
subtraction). This is related to the full tables which include all numbers 
between 0 and Sppn. We will use mod10 format numbers for ease of 
understanding although this will eventually be translated into modNt 
number system and will be a much more natural process.  
Using the example table for n = 4, Pn = 7, Sppn = 210 and Sppn-1 = 30 
we will add sets of numbers to show the process. Anyone familiar with 
Group Theory will recognize the pattern of wrapping numbers larger 
that the size of the table back into the table so that the process has 
Closure, Completeness, maintains Symmetry, etc.. Once again the 
complete table is shown for example (Figure 12).  

Figure 12) Group theo ry. 

For those not familiar with Group Theory the rules are as follows. 
Imagine two numbers that you wish to add together A and B. Find 
their modNt equivalents (using the method for converting mod10 
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numbers to modNt). For example, chose 25 and 126 found in row 1 
and row 5. To add together in mod10 math 25 + 126 = 151. On a 
normal number line you would add these linear distances and also 
arrive at point 151 on the number line. One could do that also in the 
table above however the full process is as follows. Since each number 
is a combination of row position and column position, we divide the 
number into its two components (row and column as described in the 
chapter on converting mod10 numbers to modNt).  

25 = 0 x Sppn-1 + 25 = 0 x 30 + 25. 126 = 4 x Sppn-1 + 6. Now add the 
row values and column values noting that the sum of the columns 
values (25 + 6) goes beyond the right hand boundary (30) and therefore 
wraps to the next row (as in carrying 1 in standard addition). Thus the 
final row of 25 + 126 is 0 + 4 + 1 (the row of 25 plus the row of 126 
plus the carried 1). The end result is the number with 5 x Sppn-1 which 
according to the table is the 6th row. Adding the 25 and 6 gives 31 so 
it is the cell in column under 1 (count down 5) which is 151. If you are 
not familiar with Group Theory and closed group algebra this may 
seem a bit tedious but the next example will make the effort clear.  

The next example will add two numbers whose sum is greater than 
Sppn (the largest value in the table) and therefore wraps around to enter 
the table again so the sum remains in the closed group. Add for 
example 170 + 187 (= 357 in normal mod10 arithmetic). In this case:  
170 = 5 x Sppn-1 + 20 = 5 x 30 + 20 and 187 = 6 x Sppn-1 + 7 = 6 x 30 + 
7.  

Adding the columns and rows separately arrives at: 
(5 + 6) x Sppn-1 + (20 + 7) = 11 x Sppn-1 + 27.  

The only problem is that the table only has 7 rows and we have to get 
to row 11. The wrapping process is as follows. First add the columns 
which gives the cell below top cell 27 in the same row as the number 
170 = 177. Now counting down and wrapping back to the top of the 
table … staying in the same column (since the row count of 177 is 5 x 
30, count down and wrap … cell 207 will be 6, cell 27 at the top of the 
table will be 7, cell 57 below that will be 8, cell 87 below that will be 9, 
cell 117 below that will be 10 and finally cell 143 will be 11. You have 
wrapped back into the table and so in this group  170 + 187 = 147. 
This “maps to” traditional arithmetic since 147 + Sppn = 147 + 210 = 
357. 

Another and possibly simpler way of looking at this is to create a table 
below the Sppn = 210 table and continue the counting process 
extended from 210 in the first table. Starting with the top left cell of 
the second lower table = 211 and so on. Now add the two numbers 
counting into the second table. You will end up in cell 357. Now take 
this table and lay it over the upper table and you will find 357 laying 
over the cell with 147. This is another way of visualizing the wrapping 
process to contain all the additions (and subtractions) within the same 
table. This in abstract algebra is a closed group. These are all the 
elements of the group.  

In the system of self-generating groups of relative primes forming tables 
Sppn , these form an infinite number of closed groups with one table 
or group formed from the prior group and maintaining the properties 
found in the prior group. This is of significance in the pure 
mathematical sense and more so because the properties of one group 
translate to the next forming the basis for proofs by Induction. The 
prime numbers found in one table are directly related to the prime 
numbers found in the prior table and that table is directly related to 
the prime numbers found in the table before that going back to the 
alpha table for n = α, pα = 0 with Sppα = 0. This then uses Peano´s 
postulates to generate the Prime numbers using the Generator 
Function, its boundary conditions and selection rules as defined in the 
prior and current text being visualized in the tables.  

Peano axioms, also known as Peano’s postulates, in number theory, 
five axioms introduced in 1889 by Italian mathematician Giuseppe 
Peano. Like the axioms for geometry devised by Greek 
mathematician Euclid (c. 300 BCE), the Peano axioms were meant to 
provide a rigorous foundation for the natural numbers (0, 1, 2, 3,…) 
used in arithmetic, number theory, and set theory. In particular, the 
Peano axioms enable an infinite set to be generated by a finite set of 
symbols and rules. 

The five Peano axioms are: 

1. Zero is a natural number. 

2. Every natural number has a successor in the natural
numbers. 

3. Zero is not the successor of any natural number. 

4. If the successor of two natural numbers is the same, then the
two original numbers are the same. 

5. If a set contains zero and the successor of every number is in
the set, then the set contains the natural numbers. 

The fifth axiom is known as the principle of induction because it can 
be used to establish properties for an infinite number of cases without 
having to give an infinite number of proofs. In particular, given 
that P is a property and zero has P and that whenever a natural number 
has P its successor also has P, it follows that all natural numbers have P.  

This may seem like a long way of accomplishing the same goal, however 
this creates a mathematical Group structure that deals with prime 
numbers in the red columns that originate with Peano´s Postulates and 
ultimately generates the entire set of prime numbers using the 
Generator Function. Each table when viewed as a closed Group is 
generated from the prior table so it is a Self-Generating Primal Group.  

There are properties in the closed Group structure such as in table Sppn 
= 210 where (209,1) is a relatively prime twin prime pair (rather than 
(209,211) because 211 is not found in the closed Group). (209,1) then 
generates future true twin primes in future tables. This entire topic is 
deferred to the upcoming Volumes II and III. When we look at tables 
for this Volume I the actual relative prime and twin prime values from 
the two end columns are used in creating row 1 of the next table (except 
for multiples of the table prime number 7). The twin prime pair 
parents (e.g. (29,31), (59,61), etc.), in addition to twin prime pairs in 
the middle of the table with top (row 1) with cell values of (11,13) and 
(17,19), all carry to the next table to generate more twin prime pairs. 
Note that the cells 91 and 119 do NOT carry to the next table and will 
not generate twin prime pairs since they are eliminated by the selection 
rules (since they are not relatively prime to 210). 209 however will 
proceed to build row 1 of the following table since, although it is not a 
true prime (it has factors 11 and 19 which are larger than pn = 7) it is 
relatively prime to 210 (thus it is as real a prime as any true prime 
relative to the current table). These numbers are all eliminated 
eventually by the natural selection process of the Generator Function 
selection rules based on the selection rule that all numbers less than 
pn

2 are prime so eventually all prime numbers are identified by this 
naturally occurring process. The selection rules are simple when you 
become familiar with using them just like the selection rules and 
boundary conditions of other mathematical systems (such as Quantum 
Mechanics or Nuclear Physics). In other words, no detailed 
calculations, division, brute force calculations are made and no other 
numbers need be involved in the process as would be the case with 
Sieves, odd man out multiplication tables, etc.  
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APPENDIX 1 – Problem Session 
1) In the table Sppn why is pn still generating primes (since pn

is a factor of Sppn )? Pn is prime relative to Sppn-1 … to create 
the table Sppn you add the members of the first row (row 1)
of Sppn to the prior table magic number (and multiples of
the prior table magic number) of the PRIOR table Sppn-1

(e.g. in table Sppn = 2310, pn = 11; to create the potential
primes in rows 2 through 11 below the cell containing the
value pn = 11 … you add m ◦ Sppn-1 = m ◦ 210 where (m =
1,2,3 … pn-1) = 210, 420, 630 … 2100 and since pn has no
common factors with any of these, these cells will generate
true primes, relative primes or non-primes. It in fact will
generate many relative and true primes (relative to 2310)
which will then advance to the next table to generate more
true primes. Without this the next table would be
incomplete. This same holds true for all elements of row 1
of table Sppn (this is a simple process but the rules to create
tables must be followed exactly … the boundary conditions
and selection rules are a result of simple algebra).

2) What is a proof by “Induction”? Induction is defined in the
Postulates of Peano in number theory which is the basis for
all numbers and mathematics. It is used to generate
elements of the number system starting from only the given
number “0”. The McCanney Generator Function for prime 
numbers begins with Peano’s Postulates and creates the
prime numbers beginning from just the number “0” and
additionally allows for the organization and mathematical
structure which sets up the equations that allow for
Induction to be used in the proofs of certain problems
involving prime numbers. Induction is defined as one of the 
Peano Postulates. It states that if a property is known of a
certain element in a mathematical logical structure and this
property can propagate to the next logical element, then this 
can be inferred to continue to infinity for all elements. This
was first used by the ancient Greeks to prove the infinite
number of prime numbers. The current work with the
Geneator Function uses proofs by Induction using the
tables as visual aids to prove properties of the prime
numbers.

3) Before doing this problem understand that this may be a
very difficult problem even for trained mathematicians as
you will be dealing with new notation and concepts. It is
divided into 2 parts A and B. A) Draw tables Sppn for n = α, 
0, 1, 2, 3, 4, 5, 6, 7 and 8 (more if you can) using square cells 
(larger tables do not have to be to scale but please use square 
cells such as 1/4” graph paper taped together … e.g. use 11” 
x 17” graph paper marked with a 1/4” grid ). There is an
example in this book up to n = 4. Include the numbers in

each cell for all tables up to n = 4 thereafter you can include 
just the main numbers at the top cells and left hand side 
cells. The idea is to conceptualize the growth of the tables 
and the pivotal ½ points in each table that gives them 
symmetry. The tables grow faster than exponentially and 
this is one of the strengths of this method of understanding 
prime numbers. In the base10 (mod10) number system, the 
number of primes per unit length diminishes as you move 
out the number line whereas with the Sppn tables the 
number of primes, twin primes, and numbers of various size 
gaps in general grow in successive tables with increasing “n”. 
Hint: for a given table Sppn the number of rows is pn and 
the number of columns is Sppn-1 + 1 (the plus one is for the 
“0” cell the top left cell of row 1 … the 0 column is needed 
to balance the table).  B) mark the following cells on your 
tables … 0 and 1 and pn and ½ Sppn-1 and Sppn-1 and Sppn-1 - 
1 and Sppn-1 – pn and Sppn and ½ Sppn (the center cell of the 
table) also mark the difference between rows as Sppn-1 and 
lastly the DZn “Dead Zones” between 1 & pn & Sppn-1 -1 & 
Sppn-1 – pn (only on tables and higher). Hint: Sppn-1 is the 
upper right hand corner cell and Sppn is the lower right 
hand corner cell.  

4) Use the tables you built in the prior exercise, building each
successive table from the previous table. Use the rows from
one table stringing them together to create row 1 of the
subsequent table (do not repeat the numbers found in
column 0 rows 2 to pn since it is a duplicate of the values on 
the right hand column); use the value of the first table Sppn

as the difference between the rows in table Sppn+1.

5) What are the weaknesses of base10 (mod10 or any fixed
modulo) number system in understanding prime numbers ?
Large numbers are just strings of digits with no meaning.
They do not tell you anything about the number. They do
not give understanding of the family structure of the
numbers or its primality or factorization. In base 10
thinking, primes are defined as the numbers which only
have themselves and 1 as factors. Although base 10 (mod10) 
numbers are good for some forms of mathematics and
commerce, they are a hindrance to understanding prime
numbers. This has given rise to statements such as “prime
numbers look like so many random lottery ticket numbers
strung together” or that “prime numbers are random or
pseudorandom” or that “prime numbers become scarce as
you progress out the number line” (although this is true in
a linear number line view). When viewed with the Sppn

tables, the primes become more abundant as you progress
out the number line). The mod10 number system is used
primarily because we have 10 fingers. If we had 6 fingers, we 
would probably be using a mod6 number system, which
would likewise gives no understanding of the natural
construction of prime numbers.

6) Print off the files of prime numbers from 1 to 9109 taken
from the Calculate Primes book and another table (look 
inline) listing the first 1,000,000 prime numbers. Circle in
red ink as many twin primes as you can (successive primes
differing by 2). Note that even though the prime numbers
become farther apart with increasing size, there is a near
constant “density” of twin primes throughout the table.



Principles of prime numbers 

J Pure Appl Math Vol 8 No 1 January 2024 31 

That is, relative to the prime numbers, there is a near 
constant density of twin primes. Now circle twin primes on 
the table to 100,000 by selecting random pages and circle as 
many as you can. Is the relative density of twin primes the 
same as earlier in the table? In the next problem, we will be 
taking examples of these primes and converting to the 
modNt number system and discovering their ancestry back 
to “0” the mother of all primes. Also note you can see the 
property of “Law of Conservation of Prime Numbers” in 
that if there is a larger than average gap or Maximal Gap 
(locally relatively large gap) there will be adjacent many small 
gaps typically including gaps of size 2 or twin prime pairs. 
This can be understood from a practical viewpoint in that if 
there is a larger than average gap that means that the 
products of relative primes and true primes of row 1 of table 
Sppn have bunched together to create this gap, but since 
there is a limited set number of products in row 1 and this 
was created from the prior table, that must necessarily create 
near by regions where there are small gaps (regions with 
fewer products to cancel red cells of the table) because a 
large number of relative primes from row 1 were used in 
creating the gap. Part of this study is to examine “Maximal 
Gaps” and their formation as well as structure in the 
patterns of the prime numbers (Maximal Gaps are locally 
large gaps and have very interesting properties). 
Understanding these are essential in the proof of The 
Goldbach Conjecture since they affect the locally minimal 
number of Goldbach pairs. See also in the accompanying 
materials the folder on Maximal Gaps. We will use the 
prime number tables for illustration. 

7) Every prime number has a unique set of ancestors going
back to the alpha prime “0”. Select random prime numbers
from the prime number list and convert to its modNt form.
Determine the ancestry going back to “0”. Pick any twin
prime pair from the list of primes. By converting the mod10 
numbers to modNT, show that the twin primes have a
unique ancestry of twin prime pairs going back as far as you 
can, eventually reaching the alpha prime “0”. What is the
parent twin prime of the pair you chose? Note how Nature’s
Number System along with the Sppn Tables help in this
process whereas if using the mod10 number system this
would be impossible without massive amounts of super
computing power. 

8) Pick any set of primes that differ by 4 and convert to their
modNt form. Follow the ancestry back to the first set of
ancestral primes with gap = 4.

9) There is a “rogue gap” of 34 between 1327 and 1361 (1361
– 1327 = 34 … in this book the gap convention is to use the
actual gap found by subtracting the two prime numbers on
both sides of the gap). The average gap between prime
numbers in that region of the prime number table is about
4 or 6 with some reaching 18, but 34 is a large gap seemingly 
out of place. Large gaps occur but how do you explain them 
in terms of the “wave nature” of prime numbers as
explained by the Generator Function? (Hint: first take the
table for Sppn = 2310 that you created above. Find the
numbers 1327 and 1361 in the table and remove all
multiples of pn = 11 by multiplying 11 times all members of

row one of the red columns only table. By completing the 
products of all members of row 1 of table 2310, find that 
every relative prime number product of row 1 will cancel all 
numbers between 1327 and 1361). This constitutes a 100% 
“hit rate” amongst the products of row 1 in this region 
where the products “hit” cells between 1327 and 1361. 
Once again look at a Maximal Gap table to see how the 
relative size of the Max Gaps diminishes with increasing 
prime number size. This is basically stating that the products 
are spread throughout the table and the Maximal Gaps 
become relatively smaller with respect to the prime numbers 
that bound the gap. How do you similarly explain the fact 
that twin primes (gap = 2) continue to occur as far out as we 
can see in the prime number table? (Hint: understand that 
the entire table of relative primes of the table 2310 will carry 
to the next table 30030). Does this gap of 34 carry to the 
next table to continue to make larger and larger Maximal 
Gaps? (Hint: think of the rule for building subsequent tables 
and you will find that this rogue gap does NOT propagate 
to the next table since the subsequent tables are built from 
relative primes of the prior table so the gap of 34 does NOT 
propagate to the next table. This is important in 
understanding the orderly progression from one table to the 
next). Finally note that every time there is a large gap, that 
this is balanced by equally small gaps. Can you find 
numerous gaps of length 2 (twin primes) in the vicinity of 
the gap 34? How far away and in what direction (positive or 
negative) from 1327 or 1361 are these twin primes located? 

10) Print out prime number tables that are available with this
text or found online. It is very handy to have print copies
but if you are a purely electronic person you can use them
in electronic form also. Minimally you could print the 2
pages with prime numbers to 9109. The following problems 
will help you understand the prime numbers as described in 
this and prior books. First of all, take a good look at the
prime number tables … what even experts in mathematics
call “lists of seemingly random lottery numbers” since they
will never look the same again. Take a good look since they
will never look the same. 

11) Using the “^” symbol in the prime number table you have
printed out place the symbol in the space between prime
numbers where the magic numbers would go (e.g. place ^2
between 2 an 3 and place ^6 between 5 and 7 in the prime
number table; continue by placing ^30 between 29 and 31,
etc to as large numbers as your table will accommodate).
Hint: the magic numbers are 2, 6, 30, 210, 2310, 30030,
510510, 9699690, 223092870, etc.

12) Write small numbers in blue between the black printed
prime numbers with the “gap size” (e.g. the difference
between the two adjacent prime numbers … for example
between 5 and 7 write “2” not including the quote marks of 
course, between 7 and 11 write “4”, etc.). Although this may 
seem like a tedious task the information you are gathering
is important. Note the patterns of gaps for example a gap
size that seems totally out of place comes between the
numbers 1327 and 1361 with a gap size of “34”. Note the
first time each given gap size appears. See an online listing
“Maximal Gap” table. Even though the prime numbers in
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general become farther apart with size, the gap sizes are not 
in very good order. This is the working of the Generator 
Function and the waves as they create the prime numbers 
and is typical of other wave systems that have irregular wave 
patterns interacting. Most importantly note every time you 
find a gap of “2” (circle these) “twin primes”. We will work 
with other gap sizes and gap patterns later in this problem 
set. Also note however that since it is the relative primes that 
carry over to the next table to continue generating prime 
numbers, the unusual patterns found in the real prime lists 
do not continue to generate future primes and prime 
patterns. It is the orderly symmetrical relative primes that 
carry the patterns forward to future tables. This is an 
extremely important point and one that cannot be 
overstressed (that is why it is repeated many times). This is 
what guarantees that all prime gaps including gap = 2 are 
abundant in future tables which in turn guarantees their 
propagation in greater and greater numbers with each 
subsequent Sppn table. Note for example that in the gap 
region 34 between 1327 and 1361 that some relative prime 
and twin prime pairs carry to the next table to generate 
future primes and twin prime pairs. This Maximal Gap 
(1327,1361) is relative to the particular table Sppn = 2310 
and does not carry forward to affect future tables.  

13) The twin primes keep occurring in your table quite
regularly. When you have a gap that is small (2) or large (like 
34) you will then nearby have many larger of smaller gaps
sizes respectively. In a sense, the large gaps “average out”
with the smaller gaps to give an “average gap size” in that
region. All of this is related to the spacing of primes and the 
wave nature of primes. Do you remember the discussion of
“rogue primes” in the text and in the Calculate Primes
book? If not, you may possibly want to review that concept
at this time as it is critical to understanding what is yet to
come. This leads to the “Law of Conservation of Prime
Gaps”.

14) Go into the very large tables of the prime numbers and
continue looking for twin primes (pairs of primes with gap
= 2). Find online a separate table which lists just twin
primes, but it is instructive to see them mixed in with all the 
other primes and gap sizes. Do you see that they continue
to occur? Take a given twin prime pair, reduce each member 
of the pair to modNt number system and determine the
ancestry of each going back to the number “0”. Use the
tables you created to visualize this process by plotting the
regression of ancestors into prior tables. Do you see where
this twin prime pair was born and how it was carried
through various tables Sppn to get to the final twin prime?
You can do this for ANY twin prime pair convincing
yourself that this ancestry is unique. Next use your selected
twin prime to calculate new twin primes as it creates not just 
one but many twin primes in the following table. Follow one 
or two of the twin primes you located and create future twin 
primes with these. In what future tables will the twin primes 
you discovered be retired to the “Dead Zones”. Do you see
all the other twin primes (and relative twin primes) that will
continue to generate more twin primes into the future?
These are exercises to prepare you for the induction proofs
which will prove that each twin prime pair creates an

infinite number of twin primes (with gap =2). Likewise take 
prime pairs of any gap size OR gap patterns and follow them 
backwards in the tables to the alpha prime “0”. Next take 
any twin prime (or prime pairs of any gap size or gap pattern) 
in row 1 of any table that you have produced and follow it 
into future tables watching the vast number of future twin 
primes (or related gap patterns) that are developed from just 
this one twin prime (or prime pattern), remembering that 
the entire prior table of relative primes carries forward to 
create row 1 of the subsequent table. This leads to the 
Theorem that every twin prime generates an infinite 
number of twin prime numbers which is a much more 
powerful proof than just the solution of The Twin Prime 
Conjecture that simply seeks a single future twin prime. So 
there are different infinities of twin prime pairs (a problem 
which requires the work of George Cantor on infinities to 
fully understand). 

15) Review the Chapter “PHYSICAL SIZE OF TABLES”. The
tables become large very quickly. Review this important
concept.

16) Using what you learned in the problem dealing with table
size, create the tables up to n = 8 in both mod10 and modNt 
number systems. Select out the relative prime only (red)
columns and show that they are symmetrical around the
center ½ points of ½ Sppn-1 in row 1 and ½ Sppn which is
the center cell of the table Sppn . You do not have to write
the numbers into each cell but simply mark major locations 
so you could locate any given cell easily. Your ability to
understand the construction of the tables from the prior is
important.

17) Using the tables you developed in the prior problems realize 
the following: A) develop the list of the products of pn with
all the relative prime members of row 1 of a given table Sppn 

… these are products of pn with (1, pn , pn+1 , pn+2 , … pi …
,(Sppn-1 - 1)). Remember that these include all the relative
primes also that in fact are not all true primes (even true
primes are called relative primes as they are relatively prime
to the given table and therefore are not any more or less
prime than the numbers which are not true primes but still
relatively prime to the given table). This is also defined as
the “combn-1“ (note the subscript n-1 relates to the prior
table which becomes row 1 of table Sppn ). Show that the
products of row 1 between the nth prime number (the
prime associated with table Sppn) pn with (1, pn , pn+1 , pn+2 ,
… pi … ,(Sppn-1 - 1)) fall with one and only one product in
each of the relative prime columns of table Sppn and that
they are symmetrically spaced around the center cell ½ Sppn

(if you count backwards in the negative direction and
forward in the positive direction from ½ Sppn the product
locations are symmetrically centered around the ½ cell.) B)
except for the central row containing ½ Sppn if there is one
of these products located to the right of the vertical center
line of the table then there is NOT a product located on the 
other side of the vertical center line thus giving an anti-
symmetry across the vertical center line of the table. Since
the table is completely a-symmetrical across the center
vertical line, this means that if one prime or twin prime or
other gap is “canceled” by a product on one side of the
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vertical center line of the table, its symmetrical counterpart 
on the other side of the vertical center line will NOT be 
canceled which guarantees the preservation of the prime 
gaps as carried into future tables (all of the cells not 
cancelled by products of pn will carry to the next table and 
propagate future primes .. this is a proof by induction. So 
the Sppn tables have symmetry around the ½ point of the 
table ½ Sppn , BUT are asymmetrical around the vertical 
center line of the table (except for the row that contains the 
½ point. C) count the number of primes, twin primes and 
other prime gaps that will carry to the next table since only 
the products of pn are not relatively prime to Sppn and 
therefore will never produce prime numbers again (since 
when added to any future Sppn to create future columns 
their offspring will never be prime due to the distributive 
law of arithmetic … e.g. they both will have the same factors 
and therefore will not create new prime numbers). They are 
symmetrical around the ½ point of table Sppn therefore by 
removing them the numbers that remain will also be 
symmetrical around the ½ point which carries this 
symmetry to create row 1 of the next table Sppn+1 . 

18) Vertical “stacking” of Sppn tables. You may have noticed in
filling out the complete set of products in a given table to
discover all the true prime numbers in the table, that the
multiples of pn with all the members of row 1 of the relative 
prime only (red column) tables are symmetrical around the
½ center point of the table. However all the other products
of row 1 are not symmetrical around this center point.
These other products are in fact centered around ½ points
of future tables and these can be observed by stacking tables 
vertically. Take table Sppn and immediately below place
another table that continues the counting cell values. Then
below that stack another table and continue the counting
process in the cells of that table and continue until you have 
stacked pn+1 tables. This is the vertical extension of table
Sppn and the products of pn+1 that you find in table Sppn will
be symmetrically located around the center point of this
“stack” of tables. This is an advanced topic that will be
discussed at length in Volumes II and III of this set.

19) There are many more problem solutions with the tables
dealing with ancestry, descendants, symmetry, closure, gap
sizes and gap patterns, wave patterns and properties of
repeating tables, vertical and horizontal extensions of the
Sppn Tables and their symmetries, formalization of
methods to create an infinite number of formulas to predict 
future prime numbers as well as the formulae that create
future tables from prior tables, etc. This book is an
introduction to the mathematics of primes using these
methods. Future texts are planned to continue where this
text left off. If the reader comprehends what is in this book
you will be ready for the next step which will also include
negative and complex prime numbers.

Another set of observations gives a prelude to the upcoming papers 
and Volumes II & III of Principles of Prime Numbers. This is but one 
example of the dozens of subtleties that emerge from the Sppn tables. 
Looking at the table for n = 5 with p5 = 11 and Spp5 = 2310, the center 
point of the red only table (prime and relative prime only table) = 1155. 
To the left of this center point is the product 11 x 103 = 1133. To the 

right of this center point is the product 11 x 107 = 1177. These are two 
of the products of 11 which will not carry to form row 1 of the next 
table Spp6. Since the only cells of the current table that DO NOT carry 
to the following table are the “white boxes” with products of 11, the 
space between these products form a “safe zone” that will always carry 
to the next table carrying the two sets of twin primes with them. In this 
case to the left of 1155 will be the twin prime pair (1151,1153) and to 
the right will be the twin prime pair (1157,1159) with a gap of 4 
between 1153 and 1157. These will carry to build row 1 of the 
following table and will be along side the center point of row 1 of the 
n= 6 table. These will then generate a similar set of twin prime pairs to 
the left and right of the center point of table n = 6 which will be 
(15011,15013) to the left of 15015 and (15017, 15019) to the right of 
15015 with a similar gap of 4 between 15013 and 15017. This then 
carries to every future table thus giving a rich set of numbers to search 
not only for large primes, but also for twin primes and even consecutive 
twin primes. The future offspring of these numbers will be far more 
fruitful to search for large primes than the search for Mersenne Primes. 
If searches for large primes look in this area, we will see not only twin 
primes but dual twin primes with gap 4 between the pairs.  

Another area will be Sppn ± 1 which will produce an abundance of 
primes and possible twin primes or Sppn ± pn+1 . These are just a few 
examples of what lay hidden in the Sppn Tables, the modNt number 
system and the Generation Function. 

APPENDIX 2 
Parameters for tables Sppn and Rppn and table generation 
The following are the parameters associated with the prime number 
tables. The parameters are given for tables Sppn and Rppn . Formulae 
for generating the same parameters for the subsequent tables Sppn+1 
and Rppn+1 are given. All formulae can be rewritten using the only 
variable between tables being the gap Kn = pn+1 – pn. There are 3 tables 
involved in table generation 1) Sppn-1 and 2) Sppn and 3) Sppn+1 this 
guarantees the transition from past to current to future tables. The 
subscript notation is more easily understood if you recall that relative 
primes and related parameters from the past and present tables carry 
into the future tables and that the tables are constructed by taking the 
pn-1 rows (rows 1 through pn-1) of table Sppn-1 and placing them in 
sequential order to build row 1 of table Sppn. All the relative primes 
from table Sppn-1 (which are symmetrical around the midpoint of table 
Sppn-1) carry to row 1 of table Sppn which are then used to generate the 
columns of table Sppn by adding multiples of Sppn-1 to the row one cell 
values. Then all of the products of pn with the relative primes list of 
row 1 (= 1, pn, pn+1 …) are mapped in table Sppn and eliminated since 
they are not relatively prime to Sppn. Since these products are 
symmetrical around ½ Sppn then all of the relative primes remaining 
in table Sppn will be symmetrical around ½ Sppn, this symmetry is 
carried to the next table Sppn+1. Using the Generator Function each 
iteration creates a larger group of prime numbers than was generated 
by the prior iteration and therefore there is always a prime number pn+1 
to continue the process of generating a new table. For each parameter 
below make sure you understand what it is and how it fits into the past, 
present and future tables. The goal is to use these as building blocks to 
generate equations that calculate all pertinent values from one table to 
the next in terms of abstract parameters (with only one variable = Kn 
the gap between the n and n+1 primes) calculating the number of 
primes, number of twin primes, number of gaps, etc. Ultimately the 
equations can be used to allow proofs including by Induction.  
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Sppn types of tables are 1) Complete table including all numbers from 
0 to value of Sppn, 2) “raw” relative prime only table (red columns with 
no modifications) just created by carrying all relative primes from prior 
table to row 1 of current table, 3) relative prime table (with only 
products of pn removed … used to carry and build the next table) and 
4) true primes only table (where all products of all relative primes from 
row 1 have removed cells and all that remains in the red table are true
primes). Rppn types of tables are 1) table Rppn and 2) table showing
both Rppn and Rppn+1 showing the progression from one table to the
next. In the next paper we will deal with twin prime only tables. 

NOTE: one has to be careful in the numbers below to differentiate 
between tables with all cells including all non-prime columns and 
tables which only include relative prime columns. After creating the 
first few tables with all numbers (for illustration), only the relative 

prime tables will be used which is consistent with the process of directly 
calculating prime numbers from previously discovered prime numbers. 
For notation “x” (small x) is used for multiplication (standard 
mathematical notation applies if two quantities are listed they 
represent a product); “/” and “÷” are both used for division (the 
notation is obvious from the use); other abbreviations and definitions 
are Pr = primes; Rel = relative; Cel = Cells (or boxes containing 
numbers); Pd = products; Tot = Total number of; T = true (e.g. true 
primes); Col = columns; N = new (e.g. newly discovered primes in a 
table); # = number of; √ = square root of the argument that follows; % 
= ratio of two numbers: α = the first counting iteration of generating 
the prime numbers known as the “alpha prime”; “raw table” refers to 
the tables Sppn before any products of relative primes have been 
marked and/or eliminated; kn = (pn, pn+1) = successive prime pair pn and 
pn+1 with gap kn = pn+1 – pn. 

Parameter Parameter name Values / Equation & Notes Equation for generating parameter for 
subsequent tables / Notes 

n - 1 Table iteration “n-1” = α, 0, 1, 2, 3, 4 … ∞ / Note: α represents the alpha prime 
“0” the first and starting iteration of the tables 

= n 

n Table iteration “n” = α, 0, 1, 2, 3, 4 … ∞ / also exponent in Nature’s Number 
System modNt 10n = Sppn 

= n + 1 

Pn-1 (n – 1) th prime number -
associated with table Sppn-1

= 0, 1, 2, 3, 5, 7 …∞ / number of rows table Sppn-1 / top cell 
of column outside Dead Zone DZn-1 in table Sppn-1 

Pn = Generator Function Selection Rules

Pn nth prime number -associated 
with table Sppn 

= 0, 1, 2, 3, 5, 7 … ∞ / number of rows table Sppn / top cell 
of column outside Dead Zone DZn table Sppn / 0 and 1 are 

prime by new definition (factor definition explained in book 
“Calculate Primes”) 

Pn+1 = Generator Function Selection Rules

Pn
2 nth prime number squared This value has many uses in the tables but primarily is the 

upper limit if primes discovered by the Generator Function 
(the Strong Rule for discovering primes) 

Pn+1
2 

Kn-1 (n – 1)th Gap (between pn-1 & pn) = 2, 4, 6 … ∞ / = pn – pn-1 Kn = Pn+1 – pn 

Kn nth Gap (between pn & pn+1) = Pn+1 – pn Kn+1 = Pn+2 – pn+1 

Sppn-1 Sequential prime Product n - 1 = 1 x 2 x 3 x 5 … x pn-1 … is the top right hand cell value of 
table Sppn 

Sppn = Sppn-1 x pn 

½ Sppn-1 One half Sppn-1 Center cell value table Sppn-1 carries to create center cell row 
1 table Sppn guarantees symmetry is carried from one table 

to next 

½ Sppn = ½ (Sppn-1 x pn) 

Sppn Sequential prime Product n Sppn = Sppn-1 x pn / value of nth Sequential Prime Product / 
highest value cell (lower right corner cell) in table Sppn / 

used as base (modulo) in modNt Nature’s Number System / 
nth wavelength repeats to ∞ 

Sppn+1 = Sppn x pn+1 

√Sppn Square root of Sppn Is the upper limit of x axis prime numbers in the Rppn 
(Relative Prime Product) table which are the products of 
row 1 prime numbers in the Sppn table with all relative 
primes of row 1 (bounded by selection rules described 

below) / related to upper limit curve Sppn / x … All these 
numbers are always true prime numbers as they are always 

less than pn
2 (see Chapter 1 for more details) 

√Sppn+1 = √(Sppn x pn+1) = √Sppn x √pn+1 / the 
second form is used to create the Rppn+1

products graph from prior table Rppn 

½ Sppn One half Sppn Center cell table Sppn carries to create center cell row 1 table 
Sppn+1 and guarantees symmetry is carried from nth table to 

the next table 

½ Sppn+1 = ½ (Sppn x pn+1) 

m Sppn m ◦ Sppn The multiples of Sppn - important properties m = 1, 2, 3, … m Sppn+1 

½ m Sppn One half m ◦ Sppn The symmetries here are very important and this has 
important implications in proofs dealing with all aspects of 
prime numbers including Maximal Gaps, The Goldbach 

Conjecture and others. 
In the proofs the Maximal Gaps problem is closely related to 
the solution of the Goldbach Conjecture and these ½ point 

symmetries of primes are important 

½ m Sppn+1 
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(1, pn , pn+1 , … ,Sppn-1 – 1) “comb of n-1” = combn-1 Combn-1 (note subscript = n-1) is the set of relative prime 
numbers of row 1 of table Sppn (before removing multiples 
of pn) carried from combining in sequence all rows of table 

Sppn-1 … these are used to create the repeating wave of 
potential prime values to infinity … in general 

m Sppn-1 ± combn-1 = pattern for all future primes (the 
patterns are symmetrical and extend to positive and negative 

infinity). Where m is any positive or negative integer 
(although in this Volume I we only use the positive integers 

to predict positive primes) 
Examples are m6 ± comb2 (n = 2 for Sppn=6) where comb2 = 

(1,5) and 
m 30 ± comb3 (n = 3 for Sppn = 30) 

comb3 = (1,7,11,13,17,19,23,29) which are symmetrical 
around the ½ point of row 1 of table n = 4 which is 15. 

(1, pn+1 , pn+2 , … ,Sppn – 1) 

Note that the traditional way mathematicians 
state the n = 2 equation is m6 ± 1 which one 

can show easily is the same as m6 ± (1,5) 
where m = 1,2,3… 

This is where modern mathematical attempts 
at organizing or predicting the prime 

numbers with analytic equations ends. The 
current work shows that there are an infinite 
number of such equations (one for each table 
Sppn). There are similarly an infinite number 
of equations for prediction of twin primes. 

The first example from table n = 3 is 
(5 + (m – 1)6, 1 + m6), m = 1,2,3… 
(all twin primes meet this criteria) 

(1, pn+1 , pn+2 , … ,Sppn – 1) “comb of n” = combn Elements of row 1 of table Sppn+1 . Multiples of Sppn = m 
Sppn added to members of combn as well as products of 

combn with pn are important in the theoretical structure of 
the prime numbers. Each table n has a combn which 

predicts fewer potential primes than the prior combn-1 of the 
previous table .. this is essential in creating the McCanney 

Prime Density Function 

(1, pn+2 , pn+3 , … ,Sppn+1 – 1) 

(see notes immediately above regarding one 
use of the “comb” 

#TotColn-1 Total number of columns in Sppn-

1 (including non-relative prime 
columns) 

= Sppn-2 + 1 / the rows of table Sppn-2 are placed in sequence 
to build row 1 of table Sppn-1 / have to add 1 to include 

column “0” … note: there is a “0” cell in table Sppn-1 so it 
requires adding 1 to the value of Sppn-2 to determine the 

number of columns in Sppn-1 … the 0 column is the upper 
left cell and is symmetrical with Sppn-2 in row 1 which is the 

upper right cell of table Sppn-1 ) 

#TotColn = Sppn-1 + 1 

#TotColn Total number of columns in Sppn 

(including non-relative prime 
columns) 

= Sppn-1 + 1 / the rows of table Sppn-1 are placed in sequence 
to build row 1 of table Sppn … (have to add 1 to include 
column “0” … note: there is a “0” cell in table Sppn so it 
requires adding 1 to the value of Sppn-1 to determine the 
number of columns in Sppn … the 0 column is the upper 
left cell and is symmetrical with Sppn-1 which is the upper 

right cell of table Sppn ) 

#TotColn+1 = Sppn + 1 

DZn-1 Dead Zone table Sppn-1 = 2, 3, 5 … pn-2 / region between 1 and pn-1 of table Sppn-1 
refers to true primes < pn-1 in row 1 which cannot generate 

primes and are not included in the relative prime only tables 
of Sppn-1

DZn = DZn-1 + Kn-1 / region between 1 and pn 
in table Sppn / the prior table prime number 

pn-1 enters the DZn (see explanation below) 

DZn Dead Zone table Sppn = 2, 3, 5 … pn-1 / region between 1 and pn of table Sppn 
refers to true primes < pn in row 1 which cannot generate 

primes and are not included in the relative prime only tables 
of Sppn / the prior table prime number pn-1 enters the DZn of 

table Sppn 

DZn+1 = DZn + Kn / Dead Zone table Sppn+1 / 
the prior table prime number pn enters the 

DZn+1

Sppn-1 - 1 Row 1 of each table Sppn is created by placing in order the 
rows of table Sppn-1 with all cells symmetrical around ½ Sppn-

1 therefore (Sppn-1 – 1) is the column in table Sppn 
symmetrical with column 1 and creates in cells below twin 
prime pairs / in table Sppn-1 this value is always relatively 

prime to Sppn-1 and therefore always carries to row 1 of table 
Sppn to created twin primes with column 1 of table Sppn 

= Sppn – 1 / carries to table Sppn+1 row 1 and 
is the symmetrically located cell related to 

column 1 of table Sppn+1 

Sppn-1 – pn Row 1 of each table Sppn is created by placing in order the 
rows of table Sppn-1 with all cells symmetrical around ½ Sppn-

1 therefore (Sppn-1 – pn) is the column in table Sppn 
symmetrical with column pn 

Sppn – pn+1 carries to table Sppn+1 row 1 and is 
the symmetrically located cell related to 

column pn+1 of table Sppn+1 

A1A2A3 … An+1 Nature’s Number System Representation modNt of counting numbers using 
successive values of Sppn (1, 2, 6, 30, 210 … mod10 = 0, 

10,100, 1000, 10000 modNt) (in reverse order from right to 
left) to represent numbers. This system of numbers results 
naturally from the Generator Function and is much easier 

to represent all numbers especially large numbers 

A1A2A3 … An+2 

Nature’s Number System would be 
discovered by beings on the far side of the 

universe as opposed to the use of for example 
mod10 which has more to do with the 

number of toes and fingers we have than a 
natural progression of numbers 

#NPr<pn
2 Number of NEW prime numbers 

in table Sppn – to find the 
number of NEW primes using 

the Generator Function Rule use 
pn-1

2<#NPr<pn
2 

= “Generator Function Rule” for discovering prime 
numbers / number of “discovered” prime numbers pm in 
table Sppn such that pn-1

2 < pm < pn
2 / no new products can 

exist in this region also called the “Safe Zone” SZ / for n < 6 
pn

2 is greater than √Sppn and is used in this region to 
discover true primes and is called the “Strong Rule” but one 
could also use the “Weak Rule” using √Sppn-1 < pm < √Sppn 

but for n ≥ 6 pn
2 is less than √Sppn … since there can be 

relative primes that are not true primes between pn
2 and 

√Sppn the use of the Strong Rule pn-1
2 < pm < pn

2 can be used 
for all n to maximize prime number discovery 

#NPr<pn+1
2 = number of new primes in Sppn+1

such that pn
2 < pm < pn+1

2 

NOTE: the complete compliment of prime 
numbers is discovered in every table by 

completing the products of all members of 
row 1 per rules of table Rppn … the #NPr<pn

2 
“discovery” is based on the natural process 
and boundary conditions of the Generator 

Function which discovers prime numbers in 
groups by adding and subtracting prior table 

primes … this is the basis for the direct 
calculation of prime numbers and should not 
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be confused with Rppn tables which discover 
all prime numbers in a given table Sppn 

SZn-1 Safe Zone Table Sppn-1 The region between pn-2
2 < pi < pn-1

2 in which all numbers 
not eliminated by the boundary conditions of the Generator 

Function are discovered to be true primes 

= SZn pn-1
2 < pi < pn

2 

SZn Safe Zone Table Sppn The region between pn-1
2 < pm < pn

2 in which all numbers not 
eliminated by the boundary conditions of the Generator 

Function are discovered to be true primes 

= SZn+1 pn
2 < pm < pn+1

2 

NOTE: ON FORMULAE The construction of notation can be tedious but is necessary 
to build the formulae 

This is what will lead to proofs by induction 

Rppn NEED ALL RPPN 
PARAMENTERS 

**** **** *** 

#Pdpn Number of products of pn in 
tables Sppn and Rppn 

= pn x pj (pj = 1, pn, pn+1, pn+2 … (Sppn-1 – 1)) / number of 
products resulting from column pn of table Rppn where pn is 
multiplied by all relative primes in column pn of Rppn (also 
as viewed in table Sppn it is the series of products of pn with 

all relative primes of row 1) / these products are not 
relatively prime to Sppn because they all contain factor pn 

and are eliminated (do not carry forward to build columns 
in next table) / these products (white boxes in the table 

Sppn) eliminate one and only one cell in each column and 
are symmetrical around center cell ½ Sppn which preserves 
the symmetry when carried to the the next table / all other 
products ARE relatively prime to Sppn and although not 

symmetrically located around ½ Sppn (they will be 
symmetrically located in their respective future tables) this 

does not matter in maintaining the symmetry of the 
following table Sppn+1 because all relative products other 
than Pdpn carry to the next table … There are duplicate 

products which have to be accounted for in determining the 
true number of products. 

#Pdpn+1 = number of products of pn+1 with the 
relative primes (1, pn+1 ,pn+2 ... (Sppn – 1)) in 

column pn+1 of table Rppn+1 

NOTE: VERY IMPORTANT 
OBSERVATION 

The number of products of pn is also the 
same number of red or relative prime 

columns in table Sppn (there is one product 
for each member of row 1 and therefore the 

same number of products as columns … 
additionally, so there is one and only one 

product for each column which eliminates 
one cell in each column … the eliminated 
cells are symmetrical around 1/2Sppn and 
when eliminated leave the remaining cells 
symmetrically located around the table’s 
center cell 1/2Sppn … it is this group of 

symmetrical cells which carry to the next table 
and guarantee that the next table will by 

symmetrical 
… table symmetry is always preserved from 

Sppn to Sppn+1 
#RelPrColn Number of relative prime only 

columns Sppn 

this is the number of columns in 
which prime numbers are 

generated and the only columns 
in the “red” cell only relative 

prime only table 

= (#RelPrColn-1 x pn-1) - #Pdpn-1 - 2 / total number of relative 
primes from rows 1 through pn-1 carried from table Sppn-1 less 
the non-relative prime products eliminated from table Sppn-1 

less the two cells pn-1 and (Sppn-1 – pn-1) that enter the Dead 
Zone DZn / to these cell values in row 1 of Sppn are added 

multiples of Sppn-1 to create the raw table Sppn / 

#RelPrColn+1 = (#RelPrColn x pn) - #Pdpn - 2 

NOTE: since the number products of pn-1 
with relative primes of row 1 of table Sppn is 

also equal to (#Pdpn = #RelPrColn-1) this 
expression can also be written as 

#RelPrColn = (#RelPrColn-1 x (pn-1 – 1)) – 2 
This is one of the most important equations 
/ it is the basis for creating new tables from 

prior tables 
#RelPrCeln Number of relative Prime Cells 

Sppn 

= #RelPrColn x pn / Number of Relative Prime only columns 
Sppn multiplied by pn rows gives total number of cells (red 

cells) in the “raw” table of Sppn

#RelPrCeln+1 = #RelPrColn+1 x pn+1 

#NRelPrCeln Number of New Relative Prime 
Cells Sppn 

= #RelPrColn x (pn – 1) /Relative Prime Cells rows 2 to Pn / 
same result as #RelPrCeln above except not including row 1 
of Sppn which came completely from prior table Sppn-1 and 

therefore is not new / this gives number of new cells in Sppn 

which will be the base for discovering new primes, twin 
primes, etc. in Sppn

#NRelPrCeln+1 = #RelPrColn+1 x (pn+1 – 1) 

X and Y X and Y (caps) axis on 
combination table Sppn and Rppn 

Used to mark X and Y axis in the combination graphs of 
Sppn and Rppn also in some proofs continuous variables “x” 
and “y” (small letters) replace the prime numbers, gaps or 

other variables 
Sppn ÷ X 1/X upper limit curve for table 

Rppn 

Equation limiting products 
pi x pj in section Bn of table Rppn / Sppn X (substituting pi 

for X gives the upper limit of relative prime factors pj 
without exceeding table size maximum value of table Sppn) 

Sppn+1 ÷ X = (Sppn x pn+1) ÷ X = (Sppn ÷ X) x 
pn+1 / the second form is used to create the 
Rppn+1 products graph to compare to prior 

table Rppn 

mSppn-1 ÷ X m = 1,2,3…. Pn The complete set of limiting 1/X curves for table Rppn / 
each curve represents the upper limit of relative prime 

product values for each mth row of table Sppn with the final 
value = Sppn (Note that the first curve for m = 0 is the same 
as the upper limit curve for tables Rppn-1 & Sppn-1 ) these are 

very important in showing product distribution 

= mSppn ÷ X (m = 1,2,3…. Pn+1) 

#An Number of products in section An 
table Rppn 

= ( ∑ 𝑖𝑖)#Pdpn<√Sppn
𝑖𝑖=𝑛𝑛  ÷ 2 XXX = XXXXX 
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pi and pj < √Sppn XXXXXXXXXXXXXX including products 
in column pn #Pdpn of table Rppn 

#Bn Number of products in section Bn 
table Rppn 

XXXXXXXXXXXXX /XXXX / 
GIVE RULES ON ONLY MULT PRIMES BY NON REL 
PRIMES HAVE TO BE DONE IN ORDER !!! including 

products in column pn #Pdpn of table Rppn 

XXX = XXXXXXXXXXXX 

#PdRppn Number products in table Rppn = An + Bn XXX = XXX 

#RelPdRppn Number of products relatively 
prime to Sppn from table Rppn 

= #An + #Bn - #Pdpn = #PdRppn - #Pdpn / Total number of 
relative prime products table Rppn which includes all 

products from both regions An and Bn less the products in 
the pn column of Rppn which are not prime relative to Sppn 
/ this is a very important number compared to the number 

of cells in raw table 

XXX = XXXXXXXXXXXXXX 

#RelPrn Number of Relative Primes table 
Sppn 

= #RelPrCeln - #PdRppn / the number of relative primes 
table Sppn which will carry to the next table includes true 

primes and primes relative to Sppn 

#TPrn Number of New True Primes 
table Sppn 

= - #PdRppn / also known as the “strong rule” for the 
number of new true twin? primes between Sppn-1 and Sppn = 
the number of new true primes in columns 2 through pn in 

table Sppn 

= XXXXXXXXXXXXX 

**** Two patterns … GEN FUNCTION and 
ALL PRIMES m 

#RelPdRppn + #Tprn + 
#Pdpn

Sum of total number of relative 
prime products plus total number 

of true primes plus number of 
non-relative primes in prime only 

table 

= #RelPrCeln = total number of cells in the primes only table 
of Sppn / there are three possible cells in the table 1) 

products relatively prime to Sppn and 2) 

%TPrn/TPrn-1 Ratio number true primes #TPrn 
table Sppn and number true 
primes #TPrn-1 table Sppn-1

= #TPrn ÷ #TPrn-1 / ratio shows the growth of the new prime 
numbers from table Sppn-1 to Sppn / this ratio increases with 
increasing n is fundamental to proof of infinite number of 
prime numbers and also base for other proofs such as the 

twin primes conjecture and generalized twin prime 
conjecture / it is also important to understand the 

distribution of the products in the table in building these 
proofs 

%TPrn+1 = #TPrn+1 ÷ #TPrn 

Mpgi ith Maximal Prime Gap Using the accepted definition of Maximal Prime (a locally 
large prime gap). Note this uses the counting subscript “i” to 
note the “ith” Maximal Prime Gap in the standard Maximal 
Prime tables (we use the definition where the gap is the even 
number difference between the two prime numbers on both 

sides of the gap (this is consistent with nomenclature for 
example such that gap = 2 is a twin prime 

See accepted tables of Maximal Primes 

MMpgn = pn-1 ◦ combn-1 
Complete set Maximum Maximal 

Prime Gaps of table Sppn 

Note this uses the counting subscript “n” which is different 
from the “i” used in the Mpgi definition above because this 
parameter represents many gaps within a given table Sppn . 
This is the set of all gaps in table Sppn found by multiplying 
pn-1 by the set of all relative primes of the prior table Sppn-1 
which is the same as combn-1. These are products that carry 
to build the table Sppn … there can not be any gaps larger 
that these (there will be smaller gaps but none larger than 

this set. Essential in the proof of the Goldbach Conjecture. 

MMpgn+1 = pn ◦ combn 

Ngbi Number of Goldbach Prime Pairs 
for number “i” where i is any 

natural number 

The essence of the Goldbach conjecture lies in the analysis 
of this parameter. If this is ever 0 for any natural number “i” 

then this would disprove the Goldback Conjecture. 

Ngbi+1

The proof of the Goldbach Conjecture is 
directly related to the understanding of 

Maximal Gaps 

APPENDIX 3 
Values n, pn and Sppn to n = 170; pn = 1013, all numbers given in 
base 10 (mod10) 

To find the magic number in modNt “Nature’s Number System” take 
1 and write the number of zeros after = to the “iteration number” … 
the first few magic numbers in modNt are noted below … it is 
interesting to see the modNt numbers with far fewer digits as you go to 
larger and larger Sppn values … for example the last iteration n = 170 
the magic number has a mod10 number with 422 digits whereas the 
modNt number equivalent only has 170 digits (1 followed by 170 zeros) 
… also which number is easier to identify ? There are many great 
advantages to using a number system constructed from the prime 
numbers. 

This is iteration number α 
The prime number is 0 (zero is the “α” alpha prime) 
The magic number is undefined = 0 
The magic number has 1 digits (mod10) 

This is iteration number 0 
The prime number is 1 
The magic number is 1 (mod10) (= 1 = 100 (modNt) ) 
The magic number has 1 digits (mod10) 

This is iteration number 1 
The prime number is 2 
The magic number is 2 (mod 10) (= 10 = 101 (modNt) ) 
The magic number has 1 digits (mod10)  
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This is iteration number 2 
The prime number is 3 
The magic number is 6 (mod10) (= 100 = 102 (modNt) ) 
The magic number has 1 digits (mod10)  

This is iteration number 3 
The prime number is 5 
The magic number is 30 (mod 10) (= 1000 = 103 (modNt) ) 
The magic number has 2 digits (mod10)  

This is iteration number 4 
The prime number is 7 
The magic number is 210 mod10 (= 10000 = 104 (modNt) ) 
The magic number has 3 digits (mod10)  

This is iteration number 5 
The prime number is 11 
The magic number is 2310 (from here on create the modNt equivalent 
number = 10n) 
The magic number has 4 digits (mod10)  

This is iteration number 6 
The prime number is 13 
The magic number is 30030 
The magic number has 5 digits (mod10) 

This is iteration number 7 
The prime number is 17 
The magic number is 510510 
The magic number has 6 digits (mod10) 

This is iteration number 8 
The prime number is 19 
The magic number is 9699690 
The magic number has 7 digits (mod10) 

This is iteration number 9 
The prime number is 23 
The magic number is 223092870 
The magic number has 9 digits (mod10) 

This is iteration number 10 
The prime number is 29 
The magic number is 6469693230 
The magic number has 10 digits (mod10) 

This is iteration number 11 
The prime number is 31 
The magic number is 200560490130 
The magic number has 12 digits (mod10) 

This is iteration number 12 
The prime number is 37 
The magic number is 7420738134810 
The magic number has 13 digits (mod10) 

This is iteration number 13 
The prime number is 41 
The magic number is 304250263527210 
The magic number has 15 digits (mod10) 

This is iteration number 14 
The prime number is 43 
The magic number is 13082761331670030 
The magic number has 17 digits (mod10)  

This is iteration number 15 
The prime number is 47 
The magic number is 614889782588491410 
The magic number has 18 digits (mod10)  

This is iteration number 16 
The prime number is 53 
The magic number is 32589158477190044730 
The magic number has 20 digits (mod10)  

This is iteration number 17 
The prime number is 59 
The magic number is 1922760350154212639070 
The magic number has 22 digits (mod10)  

This is iteration number 18 
The prime number is 61 
The magic number is 117288381359406970983270 
The magic number has 24 digits (mod10)  

This is iteration number 19 
The prime number is 67 
The magic number is 7858321551080267055879090 
The magic number has 25 digits (mod10)  

This is iteration number 20 
The prime number is 71 
The magic number is 557940830126698960967415390 
The magic number has 27 digits (mod10)  

This is iteration number 21 
The prime number is 73 
The magic number is 40729680599249024150621323470 
The magic number has 29 digits (mod10)  

This is iteration number 22 
The prime number is 79 
The magic number is 3217644767340672907899084554130 
The magic number has 31 digits (mod10)  

This is iteration number 23 
The prime number is 83 
The magic number is 267064515689275851355624017992790 
The magic number has 33 digits (mod10)  

This is iteration number 24 
The prime number is 89 
The magic number is 23768741896345550770650537601358310 
The magic number has 35 digits (mod10)  

This is iteration number 25 
The prime number is 97 
The magic number is 2305567963945518424753102147331756070 
The magic number has 37 digits (mod10)  

This is iteration number 26 
The prime number is 101 
The magic number is  
232862364358497360900063316880507363070 
The magic number has 39 digits (mod10)  

This is iteration number 27 
The prime number is 103 
The magic number is 
 23984823528925228172706521638692258396210 
The magic number has 41 digits (mod10)  
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This is iteration number 28 
The prime number is 107 
The magic number is  
2566376117594999414479597815340071648394470 
The magic number has 43 digits (mod10)  

This is iteration number 29 
The prime number is 109 
The magic number is  
279734996817854936178276161872067809674997230 
The magic number has 45 digits (mod10)  

This is iteration number 30 
The prime number is 113 
The magic number is  
31610054640417607788145206291543662493274686990 
The magic number has 47 digits (mod10)  

This is iteration number 31 
The prime number is 127 
The magic number is  
4014476939333036189094441199026045136645885247730 
The magic number has 49 digits (mod10)  

This is iteration number 32 
The prime number is 131 
The magic number is  
525896479052627740771371797072411912900610967452630 
The magic number has 51 digits (mod10)  

This is iteration number 33 
The prime number is 137 
The magic number is 
 72047817630210000485677936198920432067383702541010310 
The magic number has 53 digits (mod10)  

This is iteration number 34 
The prime number is 139 
The magic number is  
1001464665059919006750923313164994005736633465320043309
0 
The magic number has 56 digits (mod10)  

This is iteration number 35 
The prime number is 149 
The magic number is 
1492182350939279320058875736615841068547583863326864530
410 
The magic number has 58 digits (mod10)  

This is iteration number 36 
The prime number is 151 
The magic number is 
2253195349918311773288902362289920013506851633623565440
91910 
The magic number has 60 digits (mod10)  

This is iteration number 37 
The prime number is 157 
The magic number is 
3537516699371749484063576708795174421205757064788997742
2429870 
The magic number has 62 digits (mod10)  

This is iteration number 38 
The prime number is 163 

The magic number is 
5766152219975951659023630035336134306565384015606066319
856068810 
The magic number has 64 digits (mod10)  

This is iteration number 39 
The prime number is 167 
The magic number is 
9629474207359839270569462159011344291964191306062130754
15963491270 
The magic number has 66 digits (mod10)  

This is iteration number 40 
The prime number is 173 
The magic number is 
1665899037873252193808516953508962562509805095948748620
46961683989710 
The magic number has 69 digits (mod10)  

This is iteration number 41 
The prime number is 179 
The magic number is 
2981959277793121426917245346781042986892551121748260030
6406141434158090 
The magic number has 71 digits (mod10)  

This is iteration number 42 
The prime number is 181 
The magic number is 
5397346292805549782720214077673687806275517530364350655
459511599582614290 
The magic number has 73 digits (mod10)  

This is iteration number 43 
The prime number is 191 
The magic number is  
1030893141925860008499560888835674370998623848299590975
192766715520279329390 
The magic number has 76 digits (mod10)  

This is iteration number 44 
The prime number is 193 
The magic number is 
1989623763916909816404152515452851536027344027218210582
12203976095413910572270 
The magic number has 78 digits (mod10)  

This is iteration number 45 
The prime number is 197 
The magic number is  
3919558814916312338316180455442117525973867733619874846
7804183290796540382737190 
The magic number has 80 digits (mod10)  

This is iteration number 46 
The prime number is 199 
The magic number is  
7799922041683461553249199106329813876687996789903550945
093032474868511536164700810 
The magic number has 82 digits (mod10)  

This is iteration number 47 
The prime number is 211 
The magic number is 
1645783550795210387735581011435590727981167322669649249
414629852197255934130751870910 
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The magic number has 85 digits (mod10) 

This is iteration number 48 
The prime number is 223 
The magic number is 
3670097318273319164650345655501367323398003129553317826
19462457039988073311157667212930 
The magic number has 87 digits (mod10)  

This is iteration number 49 
The prime number is 227 
The magic number is 
8331120912480434503756284637988103824113467104086031465
4617977748077292641632790457335110 
The magic number has 89 digits (mod10)  

This is iteration number 50 
The prime number is 229 
The magic number is  
1907826688958019501360189182099275775721983966835701205
5907516904309700014933909014729740190 
The magic number has 92 digits (mod10)  

This is iteration number 51 
The prime number is 233 
The magic number is 
4445236185272185438169240794291312557432222642727183809
026451438704160103479600800432029464270 
The magic number has 94 digits (mod10)  

This is iteration number 52 
The prime number is 239 
The magic number is 
1062411448280052319722448549835623701226301211611796930
357321893850294264731624591303255041960530 
The magic number has 97 digits (mod10)  

This is iteration number 53 
The prime number is 241 
The magic number is  
2560411590354926090531101005103853119955385919984430602
16114576417920917800321526504084465112487730 
The magic number has 99 digits (mod10)  

This is iteration number 54 
The prime number is 251 
The magic number is 
6426633091790864487233063522810671331088018659160920811
4244758680898150367880703152525200743234420230 
The magic number has 101 digits (mod10)  

This is iteration number 55 
The prime number is 257 
The magic number is  
1651644704590252173218897325362342532089620795404356648
5360902980990824644545340710198976591011245999110 
The magic number has 104 digits (mod10)  

This is iteration number 56 
The prime number is 263 
The magic number is 
4343825573072363215565699965702960859395702691913457985
649917484000586881515424606782330843435957697765930 
The magic number has 106 digits (mod10)  

This is iteration number 57 

The prime number is 269 
The magic number is 
1168489079156465704987173290774096471177444024124720198
139827803196157871127649219224446996884272620699035170 
The magic number has 109 digits (mod10)  

This is iteration number 58 
The prime number is 271 
The magic number is 
3166605404514022060515239617997801436890873305377991736
9589333466615878307559293840982513615563788020943853107
0 
The magic number has 111 digits (mod10)  

This is iteration number 59 
The prime number is 277 
The magic number is 
8771496970503841107627213741853909980187719055897037111
3762453702525982911939243939521562715111692818014473106
390 
The magic number has 113 digits (mod10)  

This is iteration number 60 
The prime number is 281 
The magic number is  
2464790648711579351243247061460948704432749054707067428
2967249490409801198254927547005559122946385681862066942
895590 
The magic number has 116 digits (mod10)  

This is iteration number 61 
The prime number is 283 
The magic number is  
6975357535853769564018389183934484833544679824821000822
0797316057859737391061444958025732317938271479669649448
39451970 
The magic number has 118 digits (mod10)  

This is iteration number 62 
The prime number is 293 
The magic number is 
2043779758005154482257388030892804056228591188672553240
8693613604952903055581003372701539569155913543543207288
37959427210 
The magic number has 121 digits (mod10)  

This is iteration number 63 
The prime number is 307 
The magic number is 
6274403857075824260530181254840908452621774949224738449
4689393767205412380633680354193726477308654578677646375
3253544153470 
The magic number has 123 digits (mod10)  

This is iteration number 64 
The prime number is 311 
The magic number is 
1951339599550581345024886370255522528765372009208893657
7848401461600883250377074590154248934442991573968748022
7261852231729170 
The magic number has 126 digits (mod10)  

This is iteration number 65 
The prime number is 313 
The magic number is  
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6107692946593319609927894338899785515035614388823837148
8665496574810764573680243467182799164806563626522181311
132959748531230210 
The magic number has 128 digits (mod10)  

This is iteration number 66 
The prime number is 317 
The magic number is  
1936138664070082316347142505431232008266289761257156376
1906962414215012369856637179096947335243680669607531475
629148240284399976570 
The magic number has 131 digits (mod10)  

This is iteration number 67 
The prime number is 331 
The magic number is  
6408618978071972467109041692977377947361419109761187605
1912045591051690944225469062810895679656583016400929184
33248067534136392244670 
The magic number has 133 digits (mod10)  

This is iteration number 68 
The prime number is 337 
The magic number is  
2159704595610254721415747050533376368260798239989520222
9494359364184419848203983074167271844044268476527113135
12004598759003964186453790 
The magic number has 136 digits (mod10)  

This is iteration number 69 
The prime number is 347 
The magic number is 
7494174946767583883312642265350815997864969892763635173
6345426993719936873267821267360433298833611613549082578
8665595769374375572699465130 
The magic number has 138 digits (mod10)  

This is iteration number 70 
The prime number is 349 
The magic number is 
2615467056421886775276112150607434783254874492574508675
5984554020808257968770469622308791221292930453128629820
0244292923511657074872113330370 
The magic number has 141 digits (mod10)  

This is iteration number 71 
The prime number is 353 
The magic number is 
9232598709169260316724675891644244784889706958788015624
8625475693453150629759757766750033011164044499544063264
686235401999614947429856005620610 
The magic number has 143 digits (mod10)  

This is iteration number 72 
The prime number is 359 
The magic number is 
3314502936591764453704158645100283877775404798204897609
3256545773949681076083753038263261851007891975336318712
022358509317861766127318306017798990 
The magic number has 146 digits (mod10)  

This is iteration number 73 
The prime number is 367 
The magic number is 

1216422577729177554509426222751804183143573560941197422
6225152299039532954922737365042617099319896354948428967
312205572919655268168725818308532229330 
The magic number has 149 digits (mod10)  

This is iteration number 74 
The prime number is 373 
The magic number is 
4537256214929832278320159810864229603125529382310666386
3819818075417457921861810371608961780463213403957640048
07452678699031415026934730229082521540090 
The magic number has 151 digits (mod10)  

This is iteration number 75 
The prime number is 379 
The magic number is 
1719620105458406433483340568317543019584575635895742560
4387711050583216552385626130839796514795557880099945578
22024565226932906295208262756822275663694110 
The magic number has 154 digits (mod10)  

This is iteration number 76 
The prime number is 383 
The magic number is  
6586145003905696640241194376656189765008924685480694006
4804933323733719395636948081116420651666986680782791564
5835408481915303111064764635862931579194844130 
The magic number has 156 digits (mod10)  

This is iteration number 77 
The prime number is 389 
The magic number is 
2562010406519315993053824612519257818588471702651989968
5209119062932416844902772803554287633498457818824505918
6229973899465052910204193443350680384306794366570 
The magic number has 159 digits (mod10)  

This is iteration number 78 
The prime number is 397 
The magic number is 
1017118131388168449242368371170145353979623265952840017
5028020267984169487426400803011052190498887754073328849
6933299638087626005351064797010220112569797363528290 
The magic number has 162 digits (mod10)  

This is iteration number 79 
The prime number is 401 
The magic number is  
4078643706866555481461897168392282869458289296470888470
1862361274616519644579867220074319283900539893834048687
270253154873138028145776983601098265140488742774844290 
The magic number has 164 digits (mod10)  

This is iteration number 80 
The prime number is 409 
The magic number is 
1668165276108421191917915941872443693608440322256593384
3061705761318156534633165693010396587115320816578125913
0935335403431134535116227862928491904424598957949113146
10 
The magic number has 167 digits (mod10)  

This is iteration number 81 
The prime number is 419 
The magic number is 
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6989612506894284794136067796445539076219364950255126280
2428547139923075880112964253713561700013194221462347575
8619055340376453702136994745670381079539069633806784082
1590 
The magic number has 169 digits (mod10)  

This is iteration number 82 
The prime number is 421 
The magic number is 
2942626865402493898331284542303571951088352644057408163
9822418345907614945527557950813409475705554767235648329
4378622298298487008599674787927230434485948315832656098
5889390 
The magic number has 172 digits (mod10)  

This is iteration number 83 
The prime number is 431 
The magic number is 
1268272178988474870180783637732839510919079989588742918
6763462307086182041522377476800579484029094104678564429
9877186210566647900706459833596636317263443724123874778
4918327090 
The magic number has 175 digits (mod10)  

This is iteration number 84 
The prime number is 433 
The magic number is 
5491618535020096187882793151383195082279616354919256837
8685791789683168239791894474546509165845977473258183981
8468216291753585410058971079473435253750711325456377790
869635629970 
The magic number has 177 digits (mod10)  

This is iteration number 85 
The prime number is 439 
The magic number is 
2410820536873822226480546193457222641120751579809553751
8243062595670910857268641674325917523806384110760342768
0307546952079823995015888303888838076396562271875349850
191770041556830 
The magic number has 180 digits (mod10)  

This is iteration number 86 
The prime number is 443 
The magic number is  
1067993497835103246330881963701549630016492949855632312
0581676729882213509770008261726381463046228161066831846
2376243299771362029792038518622755267843677086440779983
634954128409675690 
The magic number has 183 digits (mod10)  

This is iteration number 87 
The prime number is 449 
The magic number is  
4795290805279613576025660017019957838774053344851789081
1411728517171138658867337095151452769077564443190074989
6069332415973415513766252948616171152618110118119102126
52094403655944384810 
The magic number has 185 digits (mod10)  

This is iteration number 88 
The prime number is 457 
The magic number is 
2191447898012783404243726627778120732319742378597267610
0815159932347210367102373052484213915468446950537864270

2503684914099850889791177597517590216746476323980429671
82007142470766583858170 
The magic number has 188 digits (mod10)  

This is iteration number 89 
The prime number is 461 
The magic number is  
1010257480983893149356357975405713657599401236533340368
2475788728812063979234193977195222615030954044197955428
5854198745400031260193732872455609089920125585354978078
70905292679023395158616370 
The magic number has 191 digits (mod10)  

This is iteration number 90 
The prime number is 463 
The magic number is  
4677492136955425281519937426128454234685227725149365904
9862901814399856223854318114413880707593317224636533634
3504940191202144734696983199469470086330181460193548504
4229150510387831958439379310 
The magic number has 193 digits (mod10)  

This is iteration number 91 
The prime number is 467 
The magic number is 
2184388827958183606469810778001988127598001347644753877
6285975147324732856539966559431282290446079143905261207
2416807069291401591103491154152242530316194741910387151
5655013288351117524591190137770 
The magic number has 196 digits (mod10)  

This is iteration number 92 
The prime number is 479 
The magic number is  
1046322248591969947499039362662952313119442645521837107
3840982095568547038282643981967584217123671909930620118
2687650586190581362138572262838924172021457281375075445
5998751365120185294279180075991830 
The magic number has 199 digits (mod10)  

This is iteration number 93 
The prime number is 487 
The magic number is  
5095589350642893644320321696168577764891685683691346712
9605582805418824076436476192182135137392282201362119975
9688858354748131233614846920025560717744496960296617420
071391914813530238313960697008021210 
The magic number has 201 digits (mod10)  

This is iteration number 94 
The prime number is 491 
The magic number is  
2501934371165660779361277952818771682561817670692451236
0636341157460642621530309810361428352459610560868800908
2007229452181332435704889837732550312412548007505639153
255053430173443347012154702230938414110 
The magic number has 204 digits (mod10)  

This is iteration number 95 
The prime number is 499 
The magic number is  
1248465251211664728901277698456567069598347017675533166
7957534237572860668143624595370352747877345669873531653
1921607496638484885416740029028542605893861455745313937
474271661656548230159065196413238268640890 
The magic number has 207 digits (mod10)  
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This is iteration number 96 
The prime number is 503 
The magic number is  
6279780213594673586373426823236532360079685498907931828
9826397214991489160762431714712874321823048719463864215
5565685708091578973646202346013569307646123122398929105
49558645813243759770009793795858849126367670 
The magic number has 209 digits (mod10)  

This is iteration number 97 
The prime number is 509 
The magic number is 
3196408128719688855464074253027394971280559918944137300
9521636182430667982828077742788853029807931798207106885
7182934025418613697585916994120906777591876669301054914
69725350718941073722934985042092154205321144030 
The magic number has 212 digits (mod10)  

This is iteration number 98 
The prime number is 521 
The magic number is  
1665328635062957893696782685827272780037171717769895533
7960772451046378019053428503992992428529932466865902687
4592308627243097736442262753936992431125367744705849610
55726907724568299409649127206930012340972316039630 
The magic number has 215 digits (mod10)  

This is iteration number 99 
The prime number is 523 
The magic number is 
8709668761379269784034173446876636639594408083936553641
7534839918972557039649431075883350401211546801708671055
4117774120481401161593034203090470414785673304811593463
2145172739949220591246493529224396454328521288726490 
The magic number has 217 digits (mod10)  

This is iteration number 100 
The prime number is 541 
The magic number is 
4711930799906184953162487834760260422020574773409675520
1886348396164153358450342212052892567055446819724391040
9777715799180438028421831503871944494399049257903072063
5990538452312528339864352999310398481791730017201031090 
The magic number has 220 digits (mod10)  

This is iteration number 101 
The prime number is 547 
The magic number is 
2577426147548683169379880845613862450845254401055092509
5431832572701791887072337189992932234179329410389241899
4148410542151699601546741832617953638436279944072980418
7886824533414953001905801090622787969540076319408964006
230 
The magic number has 223 digits (mod10)  

This is iteration number 102 
The prime number is 557 
The magic number is 
1435626364184616525344593631006921385120806701387686527
8155530742994898081099291814826063254437886481586807737
9740664671978496678061535200768200176609007928848650093
2652961265112128822061531207476892899033822509910792951
470110 
The magic number has 226 digits (mod10)  

This is iteration number 103 

The prime number is 563 
The magic number is  
8082576430359391037690062142568967398230141728812675151
6015638083061276196589012917470736122485300891333727564
7939942103238936297486443180324966994308714639417900025
0836171922581285268206420698094907021560420730797764316
77671930 
The magic number has 228 digits (mod10)  

This is iteration number 104 
The prime number is 569 
The magic number is  
4598985988874493500445645359121742449592950643694412161
2612898069261866155859148350040848853694136207168890984
3677827056742954753269786169604906219761658629828785114
2725781823948751317609453377216002095267879395823927896
24595328170 
The magic number has 231 digits (mod10)  

This is iteration number 105 
The prime number is 571 
The magic number is 
2626020999647335788754463500058514938717574817549509344
0801964797548525574995573707873324695459351774293436752
0740039249400227164117047902844401451483907077632236300
2496421421474737002354997878390337196397959135015462828
75643932385070 
The magic number has 234 digits (mod10)  

This is iteration number 106 
The prime number is 577 
The magic number is 
1515214116796512750111325439533763119640040669726066891
5342733688185499256772446029442908349280045973767313005
9467002646903931073695536639941219637506214383793800345
2440435160190923250358833775831224562321622420903922052
19246548986185390 
The magic number has 237 digits (mod10)  

This is iteration number 107 
The prime number is 587 
The magic number is  
8894306865595529843153480330063189512287038731292012653
3061846749648880637254258192829872010273869866014127344
9071305537326075402592800076454959272161478432869608026
5825354390320719479606354264129288180827923610706022446
3697724254890823930 
The magic number has 239 digits (mod10)  

This is iteration number 108 
The prime number is 593 
The magic number is 
5274323971298149196990013835727471380786213967656163503
4105675122541786217891775108348114102092404830546377515
5299284183634362713737530445337790848391756710691677559
7634435153460186651406568078628667891230958701148671310
6972750483150258590490 
The magic number has 242 digits (mod10)  

This is iteration number 109 
The prime number is 599 
The magic number is 
3159320058807591368997018287600755357090942166626041938
5429299398402529944517173289900520347153350493497280131
8024271225996983265528780736757336718186662269704314858
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2983026656922651804192534279098572066847344261988054115
1076677539407004895703510 
The magic number has 245 digits (mod10)  

This is iteration number 110 
The prime number is 601 
The magic number is  
1898751355343362412767207990848053969611656242142251205
0643008938439920496654821147230212728639163646591865359
2132587006824186942582797222791159367630184024092293229
8372799020810513734319713101738241812175253901454820523
1797083201183609942317809510 
The magic number has 248 digits (mod10)  

This is iteration number 111 
The prime number is 607 
The magic number is 
1152542072693420984549695250444768759554275338980346481
4740306425633031741469476436368739126283972333481262273
0424480313142281474147757914234233736151521702624021990
5112289005631981836732065852755112779990379118183076057
5700829503118451234986910372570 
The magic number has 251 digits (mod10)  

This is iteration number 112 
The prime number is 613 
The magic number is 
7065082905610670635289631885226432496067707827949523931
4358078389130484575207890554940370844120750404240137733
7502064319562185436525756014255852802608828037085254801
8338331604524048659167563677388841341341023994462256232
904608485411610607046976058385410 
The magic number has 253 digits (mod10)  

This is iteration number 113 
The prime number is 617 
The magic number is 
4359156152761783781973702873184708850073775729844856265
6958934366093508982903268472398208810822502999416164981
7238773685169868414336391460795861179209646898881602212
7314750599991338022706386788948915107607411804583212095
702143435498963744547984228023797970 
The magic number has 256 digits (mod10)  

This is iteration number 114 
The prime number is 619 
The magic number is 
2698317658559544161041722078501334778195667176773966028
4657580372611882060417123184414491253899129356638606123
6870800911120148548474226314232638069930771430407711769
6807830621394638236055253422359378451608987907037008287
239626786573858557875202237146730943430 
The magic number has 259 digits (mod10)  

This is iteration number 115 
The prime number is 631 
The magic number is 
1702638442551072365617326631534342245041465988544372563
9618933215118097580123204729365543981210350624038960464
0465475374916813734087236804280794622126316772587266126
6685741122100016726950864909508767802965271369340352229
248204502328104750019252611639587225304330 
The magic number has 262 digits (mod10)  

This is iteration number 116 
The prime number is 641 

The magic number is  
1091391241675237386360706370813513379071579698656942813
4995736190890700548858974231523313691955834750008973657
4538369715321677603549918791543989352782969051228437587
1945560059266110721975504406995120161700738947747165778
948099085992315144762340924060975411420075530 
The magic number has 265 digits (mod10)  

This is iteration number 117 
The prime number is 643 
The magic number is 
7017645683971776394299341964330891027430257462364142290
8022583707427204529163204308694907039276017442557700617
4281717269518386990825977829627851538394490999398853685
6609951181081091942302493336978622639735751434014275958
63627712293058638082185214171207189543108565790 
The magic number has 267 digits (mod10)  

This is iteration number 118 
The prime number is 647 
The magic number is 
4540416757529739327111674250922086494747376578149600062
1490611658705401330368593187725604854411583285334832299
4760271073378396383064407655769219945341235676611058334
6226638414159466486669713189025168847909031177807236545
23767129853608938839173833568771051634391242066130 
The magic number has 270 digits (mod10)  

This is iteration number 119 
The prime number is 653 
The magic number is 
2964892142666919780603923285852122481070036905531688840
5833369413134627068730691351584819969930763885323645491
5578457010916092838141058199217300624307826896827021092
5085994884446131615795322712433435257684597359108125464
04019935794406637061980513320407496717257481069182890 
The magic number has 273 digits (mod10)  

This is iteration number 120 
The prime number is 659 
The magic number is  
1953863922017500135417985445376548715025154320745382945
9444190443255719238293525600694396360184373400428282378
9366203170193705180334957353284201111418857925009006899
9631670628850000734809117667493633834814149659652254680
8024913768851397382384515827814854033667268002459152451
0 
The magic number has 276 digits (mod10)  

This is iteration number 121 
The prime number is 661 
The magic number is 
1291504052453567589511288379393898700631627006012698127
2692609882992030416512020422058995994081870817683094652
4771060295498039124201406810520856934647865088430953560
8756534285669850485708826778213291964812152925030140344
0104468001210773669756164962185618516254064149625499770
1110 
The magic number has 279 digits (mod10)  

This is iteration number 122 
The prime number is 673 
The magic number is 
8691822273012509877410970793320938255250849750465458396
5221264512536364703125897440457043040170990603007227011
1709235788701803305875467834805367170180132045140317464
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6931475742558093768820404217375454923185789185452844515
1903069648148506797458990195509212614389851726979613452
847030 
The magic number has 281 digits (mod10)  

This is iteration number 123 
The prime number is 677 
The magic number is 

5884363678829469187007227227078275198804825281065115334
4454796074987118904016232567189418138195760638235892686
5627152628951120838077691724163233574211949394559994923
5972609077711829481491413655163182982996779278551575736
7838378151796539101879736362359736939941929619165198307
577439310 
The magic number has 284 digits (mod10)  

This is iteration number 124 
The prime number is 683 
The magic number is 
4019020392640527454725936196094461960783695666967473773
4262625719216202211443086843390372588387704515915114704
9223345245573615532407063447603488531186761436484476532
8169292000077179535858635526476453977386800247250726228
2233612277677036206583859935491700329980337929889830444
075391048730 
The magic number has 287 digits (mod10)  

This is iteration number 125 
The prime number is 691 
The magic number is 
2777143091314604471215621911501273214901533705874524377
4375474371978395728107173008782747458575903820497344261
1013331564691368332893280842294010575050052152610773284
1764980772053331059278317148795229698374278970850251823
7023426083874832018749447215424764928016413509553872836
856095214672430 
The magic number has 290 digits (mod10)  

This is iteration number 126 
The prime number is 701 
The magic number is 
1946777307011537734322150959962392523645975127818041588
5837207534756855405403128279156705968461708578168638327
0320345426848649201358189870448101413110086558980152072
2077251521209385072554100321305456018560369558566026528
4153421684796257245143362498012760214539505870197264858
636122745485373430 
The magic number has 293 digits (mod10)  

This is iteration number 127 
The prime number is 709 
The magic number is  
1380265110671180253634405030613336299264996365622991486
3058580142142610482430817949922104531639351381921564573
8657124907635692283762956618147703901895051370316927819
1952771328537454016440857127805568317159302017023312808
6464775974520546386806644011091046992108509661969860784
773011026549129761870 
The magic number has 296 digits (mod10)  

This is iteration number 128 
The prime number is 719 
The magic number is 
9924106145725786023631372170109887991715323868829308786
5391191222005369368677581059939931582486936436016049286

0944728085900627520255658084481991054625419352578711020
0140425852184294378209762748922036200375381502397619094
1681739256802728521139770439744627873260184469563299042
51794928088824298784530 
The magic number has 298 digits (mod10)  

This is iteration number 129 
The prime number is 727 
The magic number is  
7214825167942646439180007567669888569977040452638907487
8139396018397903531028601430576330260468002788983667830
9906817318449756207225863427418407496712679869324722911
5502089594537982012958497518466320317672902352243069081
4602624439695583634868613109694344463860154109372518403
91054912720575265216353310 
The magic number has 301 digits (mod10)  

This is iteration number 130 
The prime number is 733 
The magic number is 
5288466848101959839918945547102028321793170651784319188
5676177281485663288243964848612450080923046044325028520
1161697094423671299896557892297692695090394344215021894
1663031672796340815498578681035812792854237424194169636
7103723714296862804358693409405954492009492962170055990
06643251024181669403586976230 
The magic number has 304 digits (mod10)  

This is iteration number 131 
The prime number is 739 
The magic number is 
3908177000747348321700100759308398929805153111668611880
3514695011017905170012290023124600609802131026756196076
3658494152779093090623556282407994901671801420374901179
7888980406196495862653449645285465653919281456479491361
5289651824865381612421074429551000369595015299043671376
65909362506870253689250775433970 
The magic number has 307 digits (mod10)  

This is iteration number 132 
The prime number is 743 
The magic number is 
2903775511555279803023174864166140404845228761969778627
1011418393186303541319131487181578253082983352879853684
7398261155514866166333302317829140211942148455338551576
5831512441803996425951513086447100980862026122164262081
6160211305874978538028858301156393274609096367189447832
85770656342604598491113326147439710 
The magic number has 310 digits (mod10)  

This is iteration number 133 
The prime number is 751 
The magic number is  
2180735409178015132070404322988771444038766800239303748
9529575213282913959530667746873365268065320498012770117
2396094127791664490916310040689684299168553489959252234
0139465843794801315889586327921772836627381617745360823
2936318690712108882059672584168451349231431371759275322
47613762913296053466826107936727222210 
The magic number has 313 digits (mod10)  

This is iteration number 134 
The prime number is 757 
The magic number is 
1650816704747757454977296072502499983137346467781152937
9573888436455165867364715484383137507925447616995666978
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7503843254738290019623646700802091014470594991899153941
1485575643752664596128416850236782037326927884633238143
2332793248869066423719172146215517671368193548421771419
11443618525365112474387363708102507212970 
The magic number has 316 digits (mod10)  

This is iteration number 135 
The prime number is 761 
The magic number is 
1256271512313043423237722311174402487167520661981457385
7855729100142381225064548483615567643531265636533702570
8290424716855838704933595139310391262012122788835256149
2140523064895777757653725223030191130405792120205894227
0005255662389359548450290003270008947911195290348968049
94608593697802850593008783781866007989070170 
The magic number has 319 digits (mod10)  

This is iteration number 136 
The prime number is 769 
The magic number is 
9660727929687303924698084572931155126318233890637407296
6910556780094911620746377839003715178755432744944172769
6753366072621399640939346621296908804873224246143119787
4560622369048530956357146965102169792820541404383326605
6340416043774174927582730125146368809437091782783564304
0854008553610392106023754728254960143594960730 
The magic number has 321 digits (mod10)  

This is iteration number 137 
The prime number is 773 
The magic number is 
7467742689648285933791619374875782912643994797462715840
3421860391013366682836950069549871833177949511841845550
9590351974136341922446114938262510506167002342268631595
7035361091274514429264074604023977249850278505588311466
1551141601837437219021450386738143089694871948091695207
0580148611940833097956362404941084190998904644290 
The magic number has 324 digits (mod10)  

This is iteration number 138 
The prime number is 787 
The magic number is 
5877113496753201029894004448027241152250823905603157366
3493004127727519579392679704735749132711046265819532448
6047607003645301092965092456412595768353430843365413065
8186829178833042855830826713366870095632169183898001123
8640748440646063091369881454362918611589864223148164127
9546576957597435648091657212688633258316137955056230 
The magic number has 327 digits (mod10)  

This is iteration number 139 
The prime number is 797 
The magic number is 
4684059456912301220825521545077711198343906652765716420
9803924289798833104775965724674392058770703873858167361
5379942781905304971093178687760838827377684382162234213
4574902855529935156097168890553395466218838839566706895
7196676507194912283821795519127246133437121785849086809
9798621835205156211529050798512840706877961950179815310 
The magic number has 330 digits (mod10)  

This is iteration number 140 
The prime number is 809 
The magic number is  
3789404100642051687647846929967868359460220482087464584
5731374750447255981763756271261583175545499433951257395

4842373710561391721614381558398518611348546665169247478
6871096410123717541282609632457696932171040621209465878
6372111294320684037611832574973942121950631524751911229
2737085064680971375127002095996888131864271217695470585
790 
The magic number has 333 digits (mod10)  

This is iteration number 141 
The prime number is 811 
The magic number is 
3073206725620703918682403860203941239522238810972933778
0888144922612724601210406335993143955367400040934469747
7377165079265288686229263443861198593803671345452259705
2152459188610334925980196411923192211990713943800876827
5747782259694074754503196218303867060901962166573800006
9409775987456267785227998699853476274941923957551026645
075690 
The magic number has 336 digits (mod10)  

This is iteration number 142 
The prime number is 821 
The magic number is  
2523102721734597917238253569227435757647758063808778631
8109166981465046897593743601850371187356635433607199662
8926652530076802011394225287410044045512814174616305217
9817168993849084974229741254188940806044376147860519875
4388929235208835373447124095227474857000510938757089805
6985426085701595851672186932579704021727319569149392875
607141490 
The magic number has 339 digits (mod10)  

This is iteration number 143 
The prime number is 823 
The magic number is 
2076513539987574085887082687474179628544104886514624813
9803844425745733596719650984322855487194510961858725322
5606635032253208055377447411538466249457046065709219194
3989530081937796933791077052197498283374521569689207857
4862088760576871512346983130372211807311420502597084910
0899005668532413385926209845513096409881584005409950336
624677446270 
The magic number has 342 digits (mod10)  

This is iteration number 144 
The prime number is 827 
The magic number is  
1717276697569723769028617382541146552805974741147594721
1617779340091721684487151364035001487909860565457165841
7576687171673403061797149009342311588300977096341524273
7679341377762558064245220722167331080350729338132974898
1410947404997072740710955048817819164646544755647789220
6443477687876305870160975542239330730972069972474028928
388608248065290 
The magic number has 345 digits (mod10)  

This is iteration number 145 
The prime number is 829 
The magic number is 
1423622382285301004524723810126610492276153060411356023
8431139072936037276439848480785016233477274408763990482
8171073665317251138229836528744776306701510012867123622
9536174002165160635259287978676717465610754621312236190
5589675398742573302049381735469972087491985602432017263
9141643003249457566363448724516405175975846007180969981
634156237646125410 
The magic number has 348 digits (mod10)  
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This is iteration number 146 
The prime number is 839 
The magic number is  
1194419178737367542796243276696226203019692417685127704
0043725682193335274933032875378628619887433228952988015
0835530805201173704974832847616867321322566900795516719
6580849987816569772982542614109765953647423127280966163
8789737659545019000419431276059306581405775920440462484
4239838479726294898178933479869263942643734800024833814
591057083385099218990 
The magic number has 351 digits (mod10)  

This is iteration number 147 
The prime number is 853 
The magic number is 
1018839559462974514005195515021880951175797632285413931
5157298006910914989517877042697970212763980544296898776
8662707776836601170343532419017187825088149566378575761
8683465039607534016354108849835630358461251927570664137
7887646223591901207357774878478588513939126860135714499
2136582223206529548146630258328482143075105784421183243
846171692127489633798470 
The magic number has 354 digits (mod10)  

This is iteration number 148 
The prime number is 857 
The magic number is  
8731455024597691585024525563737519751576585708685997393
0898043919226541460168206255921604723387313264624422517
7439405647489672029844072830977299661005441783864394279
2117295389436566520154712843091352172012929019280591660
8497128136182593347056130708561503564458317191363073258
2610509652879958227616621313875091966153656572489540399
76169140153258616165288790 
The magic number has 356 digits (mod10)  

This is iteration number 149 
The prime number is 859 
The magic number is 
7500319866129417071536067459250529466604287123761271760
6641419726615599114284489173836658457389702094312378942
7420449451193628273636058561809500408803674492339514685
8428756739526010640812898332215471515759106027562028236
6699033068980847685121216278654331561869694467380879928
8462427791823884117522677708618703998925990995768515203
39529291391649151285983070610 
The magic number has 359 digits (mod10)  

This is iteration number 150 
The prime number is 863 
The magic number is 
6472776044469686932735626217333206929679499787805977529
4531545224069262035627514157021036248727312907391583027
5863847876380101200147918538841598852797571086889001173
8824017066210947183021531260701951918100108501786030368
2461265538530471552259609648478688137893546325349699378
5943075184344011993422070862537941551073130229348228620
53013778470993217559803389936430 
The magic number has 362 digits (mod10)  

This is iteration number 151 
The prime number is 877 
The magic number is  
5676624590999915440009144192601222477328921313905842293
3304165161508742805245329915707448790133853419782418315
1932594587585348752529724558564082193903469843201654029

4948662967067000679509882915635611832173795156066348632
9518529877291223551331677661715809496932640127331686355
0272076936669698518231156146445774740291135211138396500
20493083719061051799947572974249110 
The magic number has 365 digits (mod10)  

This is iteration number 152 
The prime number is 881 
The magic number is  
5001106264670925502648056033681677002526779677551047060
4240969507289202411421135655738262384107924862828310535
6852615831662692250978687336094956412828956931860657199
9849772073986027598648206848674974024145113532494453145
6305824821893567948723208019971628166797655952179215678
7789699781206004394561648565018727546196490121012927316
68054406756492786635753811790313465910 
The magic number has 368 digits (mod10)  

This is iteration number 153 
The prime number is 883 
The magic number is  
4415976831704427218838233477740920793231146455277574554
3544776074936365729284862784016885685167297653877398203
0100859779358157257614180917771846512527968970832960307
5867348741329662369606366647380002063320135249192602127
5918043317732020498722592681634947671282330205774247444
3618304906804901880397935682911536423291500776854414820
62892041165983130599370615810846790398530 
The magic number has 371 digits (mod10)  

This is iteration number 154 
The prime number is 887 
The magic number is  
3916971449721826943109513094756196743596026905831208629
7124216378468556401875673289422977602743393018989252206
0699462624290685487503778474063627856612308477128835792
8294338333559410521840847216226061830164959966033838087
1739304422828302182366939708610198584427426892521757483
1489436452335947967912968950742532807459561189069865945
89785240514227036841641736224221103083496110 
The magic number has 374 digits (mod10)  

This is iteration number 155 
The prime number is 907 
The magic number is  
3552693104897697037400328376943870446441596403588906227
1491664255270980656501235673506640685688257468223251750
9054412600231651737165927075975710465947363788755854064
0962964868538385343309648425117038079959618689192691145
0667549111505270079406814315709450116075676191517234037
2160918862268704806897062838323477256365821998486368412
92935213146403922415369054755368540496730971770 
The magic number has 377 digits (mod10)  

This is iteration number 156 
The prime number is 911 
The magic number is  
3236503418561802001071699151395865976708294323669493572
9328906136551863378072625698564549664662002553551382345
0748569878811034732558159566213872234478048411556583052
3917260995238469047755089715281621690843212625854541633
1558137240581301042339607841611309055744941010472200207
9038597083526790079083224245712687780549263840621081624
17863979176373973320401208882140740392521915282470 
The magic number has 380 digits (mod10)  
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This is iteration number 157 
The prime number is 919 
The magic number is  
2974346641658296038984891520132800832594922483452264593
5253264739491162444448743016980821141824380346713720375
1237935718627340919220948641350548583485326490220499825
1479962854624153054886927448343810333884912403160323760
8701928124094215657910099606440793022229600788623951991
0636470719761120082677483081809960070324773469530774012
62016996863087681481448710962687340420727640144589930 
The magic number has 383 digits (mod10)  

This is iteration number 158 
The prime number is 929 
The magic number is  
2763168030100557020216964222203371973480682987127153807
3850282942987289910892882262775182840754849342097046228
4900042282604799713956261287814659634057868309414844337
5624885491945838187989955599511399800179083622535940773
8484091227283526346198482534383496717651299132631651399
6981281298658080556807381783001452905331714553194089057
7241379008580845609626585248433653925085597769432404497
0 
The magic number has 386 digits (mod10)  

This is iteration number 159 
The prime number is 937 
The magic number is  
2589088444204221927943295476204559539151399958938143117
5197715117579090646506630680220346321787293833544932316
0951339618800697331977016826682336077112222605921709144
2960517705953250382146588396742181612767801354316176505
0959593479964664186387978134717336424439267287275857361
5171460576842621481728516730672361372295816536342861447
0875172131040252336220110377782333727805205109958163013
6890 
The magic number has 389 digits (mod10)  

This is iteration number 160 
The prime number is 941 
The magic number is  
2436332225996172834194641043108490526341467361360792673
5861049925641924298362739470087345888801843497365781309
4455210581291456189390372833908078248562601472172328304
7825847161302008609599939681334392897614501074411522091
2952977464646748999391087424769013575397350517326581777
1876344402808906814306534243562692051330363360698632621
7093536975308877448383123865493176037864698008470631395
8813490 
The magic number has 392 digits (mod10)  

This is iteration number 161 
The prime number is 947 
The magic number is  
2307206618018375673982325067823740528445369591208670661
8860414279582902310549514278172716556695345792005394900
0449084420483009011352683073710950101388783594147194904
6291077261753002153291142878223670074040932517467711420
4566469659020471302423359791256255855901290939908272942
9966898149460034753148287928653869372609854102581605092
7587579515617506943618818300622037707857869014021687931
8996375030 
The magic number has 395 digits (mod10)  

This is iteration number 162 
The prime number is 953 

The magic number is  
2198767906971512017305155789636024723608437220421863140
7773974808442505901953687107098598878530664539781141339
7427977452720307587819106969246535446623510765222276744
1115396630450611052086459162947157580561008689146728983
6951845585046509151209461881067211830673930265732584114
6758453936435413119750318396007137512097190959760269653
3990963278383484117268733840492801935588549170362668599
1003545403590 
The magic number has 398 digits (mod10)  

This is iteration number 163 
The prime number is 967 
The magic number is  
2126208566041452120734085648578035907729358792147941657
1317433639763903207189215432564345115539152609968363675
5312854196780537437421076439261399776884934909969941611
5558588541645740887367606010569901380402495402404886927
2332434680739974349219549638991993840261690566963408838
8915424956533044486798557888938901974197983658088180754
8369261490196829141398865623756539471714127047740700535
3300428405271530 
The magic number has 401 digits (mod10)  

This is iteration number 164 
The prime number is 971 
The magic number is 
2064548517626250009232797164769272866405207387175651349
0749228064210750014180728185019979107188517184279281128
9408781425073901851735865222522819183355271797580813304
8207389473938014401633945436263374240370823035735145206
3434794074998515093092182699461226018894101540521469982
5636877632793586196681399710159673816946242132003623512
9466552906981121096298298520667599827034417363356220219
8054715981518655630 
The magic number has 404 digits (mod10)  

This is iteration number 165 
The prime number is 977 
The magic number is  
2017063901720846259020442829979579590477887617270611368
0461995818733902763854571436764519587723181289040857662
9752379452297202109145940322404794342138100546236454598
8098619516037440070396364691229316632842294105913236866
5975793811273549245951062497373617820459537205089476172
9647229447239333714157727516826001319156478562967540172
1488822190120555311083437654692245031012625763999027154
7499457513943726550510 
The magic number has 407 digits (mod10)  

This is iteration number 166 
The prime number is 983 
The magic number is  
1982773815391591872617095301869926737439763527777010974
7894141889815426416869043722339522754731887207127163082
7046589001608149673290459336923912838321752836950434870
6300942984264803589199626491478418250083975106112711839
8654205316481898908769894434918266317511725072602955078
0243226546636265041017046149039959296730818427397091989
2223512212888505870795019214562476865485411126011043693
1191966736206683199151330 
The magic number has 410 digits (mod10)  

This is iteration number 167 
The prime number is 991 
The magic number is  
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1964928851053067545763541444153097396802805656027017876
0163094612807087579117222328838467049939300222263018614
9603169700593676326230845202891597622776857061417880956
7944234497406420356896829853055112485833219330157697433
3066317468633561818590965385004001920654119546949528482
3221037507716538655647892733698599663060241061550518161
3193500602972509317957864041631414573696042425876944299
8811239035580823050358968030 
The magic number has 413 digits (mod10)  

This is iteration number 168 
The prime number is 997 
The magic number is  
1959034064499908343126250819820638104612397239058936822
3882605328968666316379870661851951648789482321596229559
1154360191491895297252152667282922829908526490233627313
9240401793914201095826139363495947148375719672167224341
0067118516227661133135192488848989914892157188308679896
8751374395193389039680949055497503864071060338365866606
8353920101163591790003990449506520329974954298599313466
9814805318474080581207891125910 
The magic number has 416 digits (mod10)  

This is iteration number 169 
The prime number is 1009 
The magic number is  
1976665371080407518214387077199023847553908814210467253
7897548776929384313227289497808619213628587662490595625
1474749433215322354927422041288469135377703228645729959
7493565410059428905688574617767410672711101149216729360
0757722582873710083333409221248630824126186603003458015
9470136764750129541038077596996981398847699881411159406
2969105382074064116114026363552079012944728887286707288
1843138566340347306438762146043190 
The magic number has 419 digits (mod10)  

This is iteration number 170 
The prime number is 1013 
The magic number is  
2002362020904452815951174109202611157572109628795203328
0890216911029466309299244261280131263405759302102973368
2743921175847121545541478527825219234137613370618124449
2260981760390201481462526087798387011456345464156546841
7567572976451068314416743541124863024839827028842502970
1543248542691881225071572605757942157032719979869504478
5787703752041026949623508706278256040113010362821434482
9307099367702771821422466053941751470 
The magic number has 422 digits (mod10) 

APPENDIX 4 
RSA codes easily broken 
The author spent 25 years as a physicist, mathematician, engineer in 
the telecommunications industry with specialty in telecommunications 
protocols, network and computer security and encryption. He also 
spent many years as a faculty member at major universities with 
subjects including computer science. The solutions regarding prime 
numbers were not intended to breach security methods but was an 
unintended consequence.  

The RSA codes were designed to be used in secure computing. They 
consist of two prime numbers which are factors of a larger number. 
Their use is somewhat likened to a bank security box in which the 
owner has one key (the public key) and the bank has its own key. Only 
the two keys (the 2 prime factors) can open the box and allow secure 
transmission. They are also used to encode transmissions so that no 
one else can read the message. They are calculated using extensive 

computing power within private corporations like RSA and other 
entities. The perceived inability of computers to calculate these prime 
factors within reasonable amounts of time (which are believed to be 
sufficiently large) gave rise to extreme confidence in their “security” 
and the “RSA Factoring Challenge”.  

When you enter an internet page and it has the little lock symbol at 
the top left of your browser near the web page name, this implies that 
the site you are looking at is “secure”. The technical name for this is 
Secure Socket Layer or SSL. If you own a web page then you are 
demoted in search engines to essentially non-existent because you lack 
the credentials. To cure this, you would contact your Internet Service 
Provider ISP and for a handsome fee you can register your page and 
get the little lock symbol placed next to your web page name so when 
people look at your page. SSL uses a version of the RSA system 
otherwise called “public key encryption”. In reality nothing has 
changed on your page. In fact, nothing has changed at all anywhere. 
You just got charged for something that someone invented … sort of 
like requiring motorcyclists to wear helmets. For the vast majority of 
motorcyclists, they will never benefit from wearing a helmet. Some 
states require helmets but most have rescinded their helmet laws since 
many bikers refuse to wear them.  

The point is that the SSL lock symbol really does not do anything to 
protect you. The company that issues your SSL certificate never even 
visited your page to see if it is safe or not. Even if you web page has 
nothing like sales or things that people should be apprehensive about, 
the SSL certificate really does nothing to make you “safe”. The safety 
you receive in making on line purchases or other interactions is based 
on the fact that most of the internet is safe and has legitimate vendors 
who would soon be out of business if they were scamming their 
internet customers. It has nothing to do with an SSL certificate.  

But let us play devil’s advocate and imagine you are depending on an 
SSL certificate to keep you safe. The only reason you are safe is because 
you are not a big fish and there is most likely no one sitting outside 
your house or office intercepting your transactions (the government is 
all the time … another story that is part of this scam). The big fish that 
hackers love to break into are corporations who unwittingly hold your 
credit card data and they get hacked … they are the big fish that a real 
hacker would prey on. So if someone wanted to break into your data 
stream they could with ease because SSL depends on prime number 
public key encryption that can be broken in a matter of minutes if not 
seconds. The solutions today to combat the fact that the encryption 
codes can be broken easily is to change the codes frequently. One 
vendor complained that his encryption key changed eight times in one 
day.  

The more nefarious aspect of this, as explained in my book “Breaking 
RSA Codes for Fun and Profit” is that the government snooping 
agencies like the CIA, NSA and other agencies depend on worthless 
public key encryption in your computers so they can easily break 
through your firewalls and capture all your computer activities on a 
daily basis. If someone complained and demanded real computer 
security, then the companies that are pawning off SSL and other 
computer protection schemes would have to retool and produce real 
products with real protection. But even if they wanted to do this, the 
CIA and NSA would block them and force them to keep the tainted 
software on your computer since they would have to retool also.  

The challenges of breaking the published RSA codes were many times 
associated with cash prizes because of the perceived difficulty based on 
the number of computer calculations necessary to “solve” the problem. 
This of course assumed that no one would come up with a completely 
different method of calculating prime numbers. With the release of the 
McCanney Generator Function in the book “Calculate Primes” in 
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March 2007, the RSA Factoring Challenge remained BUT the prize 
offerings were immediately removed from the company internet page. 
Additionally, new rules were installed in groups such as those 
associated with computational mathematics which were apparently 
very offended that there was now a new method of directly and easily 
calculating prime numbers (e.g. where calculations were previously 
being performed to find the largest known prime numbers using vast 
computer resources).  

The following is a list of the RSA Challenge numbers as they stood at 
that time with the prize amounts still listed (2007). You will readily see 
that the size of the prime numbers and their products are relatively 
small compared to the size of the rapidly growing tables Sppn as 
described in this and prior books of this series. For example, the largest 
number given below RSA-2048 has only 617 decimal (mod10) digits 
(2048 binary digits in computer language). See the other appendix 
which has values of n, pn , Sppn and the number of digits in the related 
magic number Sppn. We stop in that appendix with n = 170 and the 
value of Sppn has 422 digits (for pn = 1013). This means that the two 
prime numbers that are factors of RSA-2048 are contained in the 
complete tables of prime numbers that we show can easily be achieved. 
It is a simple matter to identify those prime numbers with a brief 
computer scan of the prime number tables. Remember we are not 
laboriously determining prime numbers one at a time through brute 
force calculations with endless computer time, but calculating directly 
vast tables of prime numbers simply and quickly. We do not have to 
calculate and populate the entire tables, but just the parts of the table 
that pertain to the known public key number.  

To find the factors, you only have to scan the first and last few digits of 
these numbers in the prime number tables (not the entire numbers). 
There are many short cuts in this method. For example, in the Sppn 
tables the top row cells begin with a specific digit and all the cells of 
the column below it end with a specific set of digits. Therefore, if your 
public key number begins and ends in a certain digits, you know exactly 
where to search for the two prime numbers that are the factors. The 
size of the factors also helps isolate to certain regions of the tables since 
we know the magnitude of the product and therefore magnitudes of 
the factors. In other words, there are short cuts that make breaking the 
RSA codes extremely fast. The task is made even simpler by the fact 
that you will notice that the prime factors are generally about the same 
number of digits. This was done in creating the “public encryption 
keys” to make it more difficult to find the numbers assuming you are 
number crunching with large computers (it would take longer for you 
to reach the size of the numbers involved if both were about the same 
size … about the size of the square root of the primary RSA number). 
However, that actually makes finding the prime factors much faster 
using the McCanney Generator Function method. This fast and simple 
process is described in full in the second book of this series “Breaking 
RSA Codes for Fun and Profit”. If you have time and a computer 
handy you could easily break even the largest codes in a matter of hours 
if not minutes.  

Unfortunately, RSA codes are still being used widely and is the cause 
of much of the computer hacking you read about in the news recently. 
As noted, when you use SSL “Secure Socket Layer” encryption you are 
in fact using a form of RSA codes. You may ask why would these 
companies continue to use broken codes to sell products for “secure 
computing”. The answer is that the NSA / CIA and other spy agencies 
who snoop on the public would have to retool all the home and 
business computers which might then have real secure computing 
algorithms. They do not allow companies to sell any products for which 
they cannot hack on a daily basis. The problem is that hackers know 
this and use the same entry points into your computers whether you 
are an individual or large corporation. So the “solution” that is being 
pawned off on the public is to replace regularly the public encryption 

keys. But these are broken in minutes sometimes from the time the IT 
people install them.  

The following is taken from Wikipedia dealing with the RSA numbers 
as viewed in 2007 and you will notice the prize dollar amounts are still 
associated with the RSA Challenge, but as mentioned they were all 
removed upon the release of the McCanney Generator Function. 
(Note: some of the large numbers below wrap to the next page). 

RSA numbers 

In mathematics, the RSA numbers are a set of large semiprimes 
(numbers with exactly two prime factors) that are part of the RSA 
Factoring Challenge. The challenge was to find the prime factors but 
it was declared inactive in 2007. It was created by RSA Laboratories in 
March 1991 to encourage research into computational number theory 
and the practical difficulty of factoring large integers. 

RSA Laboratories published a number of semiprimes with 100 to 617 
decimal digits. Cash prizes of varying size were offered for factorization 
of some of them. The smallest RSA number was factored in a few days. 
Most of the numbers have still not been factored and many of them 
are expected to remain unfactored for many years to come. As of 
September 2013, 18 of the 54 listed numbers have been factored: the 
17 smallest from RSA-100 to RSA-704, plus RSA-768. 

The RSA challenge officially ended in 2007 ( my note … note the date 
2007 … it was with the release of the book “Calculate Primes” and 
the McCanney Generator Function March 2007) but people are still 
attempting to find the factorizations. According to RSA Laboratories, 
"Now that the industry has a considerably more advanced 
understanding of the cryptanalytic strength of common symmetric-key 
and public-key algorithms, these challenges are no longer active." Some 
of the smaller prizes had been awarded at the time. The remaining 
prizes were retracted. (my note … note how they cover the fact that 
the RSA codes were completely broken but cover this up with the 
ridiculous statement about “industry awareness” and “strength of 
common symmetric-key and public-key algorithms” … they were 
colluding with the NSA / CIA and other US government agencies 
which continued to use these broken codes to spy on anyone and 
everyone both domestically and internationally). 

The first RSA numbers generated, from RSA-100 to RSA-500, were 
labeled according to their number of decimal digits. Later, beginning 
with RSA-576, binary digits are counted instead. An exception to this 
is RSA-617, which was created prior to the change in the numbering 
scheme. The numbers are listed in increasing order below. 

RSA-100 
RSA-100 has 100 decimal digits (330 bits). Its factorization was 
announced on April 1, 1991. 

The value and factorization of RSA-100 are as follows: 

RSA-100 =  
15226050279225333605356183781326374297180681149613 
80688657908494580122963258952897654000350692006139 

RSA-100 =  
37975227936943673922808872755445627854565536638199 
 × 40094690950920881030683735292761468389214899724061 

It takes four hours to repeat this factorization. 
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RSA-110 
RSA-110 has 110 decimal digits (364 bits), and was factored in April 
1992 by Arjen K. Lenstra and Mark S. Manasse in approximately one 
month. 

The value and factorization are as follows: 

RSA-110 =  
3579423417972586877499180783256845540300377802422822619 
3532908190484670252364677411513516111204504060317568667 

RSA-110 =  
6122421090493547576937037317561418841225758554253106999 

×584641821440615467883655318297916238419861050560106233
3 

RSA-120 
RSA-120 has 120 decimal digits (397 bits), and was factored in June 
1993 by Thomas Denny, Bruce Dodson, Arjen K. Lenstra, and Mark 
S. Manasse. The computation took under three months of actual
computer time. 

The value and factorization are as follows: 

RSA-120 = 
2270104812954373633342599609474936688958753364660847800
3817325824700916267577973538979115157404916674788048747
0296548479 

RSA-120 =  
3274145556934980157511463037491414880636424032401714634
06883 
×693342667110830181197325401899700641361965863127336680
673013 

RSA-129 
RSA-129, having 129 decimal digits (426 bits), was not part of the 1991 
RSA Factoring Challenge. 

The value and factorization are as follows: 

RSA-129 = 
1143816257578888676692357799761466120102182967212423625
6256184293570693524573389783059712356395870505898907514
7599290026879543541 

RSA-129 =  
3490529510847650949147849619903898133417764638493387843
990820577 
×327691329932667095499619881908344614131776429679929425
39798288533 

The factorization was found using the Multiple Polynomial Quadradic 
Sieve algorithm. 

The factoring challenge included a message encrypted with RSA-129. 
When  

RSA-130 
RSA-130 has 130 decimal digits (430 bits), and was factored on April 
10, 1996 by a team led by Arjen K. Lenstra. 

The value and factorization are as follows: 

RSA-130 = 
1807082088687404805951656164405905566278102516769401349
1701270214500566625402440483873411275908123033717818879
66563182013214880557 

RSA-130 =  
3968599945959745429016112616288378606757644911281006483
2555157243 
×455344986467359721884036868972744088643563012632050696
00999044599 

The factorization was found using the Number Field Sieve algorithm 
and the polynomial 

 5748302248738405200 x5 + 9882261917482286102 x4 
- 13392499389128176685 x3 + 16875252458877684989 x2

+ 3759900174855208738 x1 - 46769930553931905995

which has a root of 12574411168418005980468 modulo RSA-130. 

RSA-140 
RSA-140 has 140 decimal digits (463 bits), and was factored on 
February 2, 1999 by a team led by Herman te Riele.  

The value and factorization are as follows: 

RSA-140 = 
2129024631825875754749788201627151749780670396327721627
8233383215381949984056495911366573853021918316783107387
995317230889569230873441936471 

RSA-140 =  
3398717423028438554530123627613875835633986495969597423
490929302771479 
×626420018740128509615165494826444221930203717862350901
9111660653946049 

The factorization was found using Number Field Sieve algorithm and 
an estimated MIPS of computing time. 

RSA-150 
RSA-150 has 150 decimal digits (496 bits), and was withdrawn from 
the challenge by RSA Security. RSA-150 was eventually factored into 
two 75-digit primes by Aoki et al. in 2004 using the general number 
field sieve (GNFS), years after bigger RSA numbers that were still part 
of the challenge had been solved. 

The value and factorization are as follows: 

RSA-150 = 
1550898124783484405096067543700118617706545458309954306
5546694577431263270346346595436333502757772902539145399
6787414027003501631772186840890795964683 

RSA-150 =  
3480098671022836954839704510475934248310128173503854568
89559637548278410717 
×445647744903640741533241125787086176005442536297766153
493419724532460296199 
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RSA-155 
RSA-155 has 155 decimal digits (512 bits), and was factored on August 
22, 1999 by a team led by Herman te Riele. 

The value and factorization are as follows: 

RSA-155 = 
1094173864157052742180970732204035761200373294544920599
0913842131476349984288934784717997257891267332497625752
899781833797076537244027146743531593354333897 

RSA-155 =  
1026395928297411057720541965739916759007165678080380668
03341933521790711307779 
×106603488380168454820927220360012878679207958575989291
522270608237193062808643 

The factorization was found using the general number field sieve 
algorithm and an estimated 8000 MIPS years of computing time. 

RSA-160 
RSA-160 has 160 decimal digits (530 bits), and was factored on April 
1, 2003 by a team from the University of Bonn.  

The value and factorization are as follows: 

RSA-160 = 
2152741102718889701896015201312825429257773588845675980
1704976767781331452188591356730110597734910596024979071
11585214302079314665202840140619946994927570407753 

RSA-160 =  
4542789285848139407168619064973883165613714577846979325
0959984709250004157335359 
×473880906038320161966338323037889519732689229210409579
44741354648812028493909367 

The factorization was found using the general number field sieve 
algorithm. 

RSA-170 
RSA-170 has 170 decimal digits (563 bits), and was factored on 
December 29, 2009 by D. Bonenberger and M. Krone. 

The value and factorization are as follows: 

RSA-170 = 
2606262368413984492152987926667443219708592538048640641
6164785191859999628542069361450283931914514618683512198
1648059198820530572229741164780650958098323773365107115
45759 

RSA-170 =  
3586420730428501486799804587268520423291459681059978161
140231860633948450858040593963 
×726702906410701907886379776392394626413613780385699667
0313708936002281582249587494493 

The factorization was found using the general number field sieve 
algorithm 

RSA-576 
RSA-576 has 174 decimal digits (576 bits), and was factored on 
December 3, 2003 by J. Franke and T. Kleinjung from the University 
of Bonn. A cash prize of US$10,000 was offered by RSA Security for a 
successful factorization. 

The value and factorization are as follows: 

RSA-576 = 
1881988129206079638386972394616504398071635633794173827
0076335642298885971523466548531906060650474304531738801
1303396716199692321205734031879550656996221305168759307
650257059 

RSA-576 =  
3980750864240649373971255005503864911990643623425267084
06385189575946388957261768583317 
×472772146107435302536223071973048224632914695302097116
459852171130520711256363590397527 

The factorization was found using the general number field sieve 
algorithm. 

RSA-180 
RSA-180 has 180 decimal digits (596 bits), and was factored on May 8, 
2010 by S. A. Danilov and I. A. Popovyan from Russia. 

RSA-180 = 
1911479277189866096892294666314546498129862462766673548
6418850363880726070343679905877620136513516127813425829
6128109200046702912984568752800330221777752773957404540
495707851421041 

RSA-180 =  
4007800823297508779525813391041005725268293178158071765
64882178998497572771950624613470377 
×476939688738611836995535477357070857939902076027788232
031989775824606225595773435668861833 

The factorization was found using the general number field sieve 
algorithm implementation running on 3 Intel Core i7 PCs. 

RSA-190 
RSA-190 has 190 decimal digits (629 bits), and was factored by I. A. 
Popovyan from Moscow State University, Russia and A. Timofeev from 
Netherlands. 

RSA-190 = 
1907556405060696491061450432646028861081179759533184460
6479756223189150255871841757540549761551215932934922604
6415263009323850924660320741712472612158085818598593894
6945490481721756401423481 

RSA-190 =  
3171195257690152709485171289740475929805147316029450327
7847619278327936427981256542415724309619 
×601526002044456164158764168552667618324354335947181107
25997638280836157040460481625355619404899 

RSA-640 
RSA-640 has 640 bits (193 decimal digits). A cash prize of US$20,000 
was offered by RSA Security for a successful factorization. On 
November 2, 2005, F. Bahr, M. Boehm, J. Franke and T. Kleinjung of 
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the German Federal Office for Information Security announced that 
they had factorized the number using GNFS as follows: 

RSA-640 = 
3107418240490043721350750035888567930037346022842727545
7201619488232064405180815045563468296717232867824379162
7283803341547107310850191954852900733772482278352574238
6454014691736602477652346609 

RSA-640 =  
1634733645809253848443133883865090859841783670033092312
181110852389333100104508151212118167511579 
×190087128166482211312685157393541397547189678996851549
3666638539088027103802104498957191261465571 

The computation took 5 months on 80 2.2 GHz computers. 

The slightly larger RSA-200 was factored in May 2005 by the same 
team. 

RSA-200 
RSA-200 has 200 decimal digits (663 bits), and factors into the two 
100-digit primes given below. 

On May 9, 2005, F. Bahr, M. Boehm, J. Franke, and T. Kleinjung 
announced that they had factorized the number using GNFS as 
follows: 

RSA-200 = 
2799783391122132787082946763872260162107044678695542853
7560009929326128400107609345671052955360856061822351910
9513657886371059544820065767750985805576135790987349501
44178863178946295187237869221823983 

RSA-200 =  
3532461934402770121272604978198464368671197400197625023
649303468776121253679423200058547956528088349 
×792586995447833303334708584148005968773797585736421996
0734330341455767872818152135381409304740185467 

The CPU time spent on finding these factors by a collection of parallel 
computers amounted – very approximately – to the equivalent of 75 
years work for a single 2.2 GHz Opteron based computer. Note that 
while this approximation serves to suggest the scale of the effort, it 
leaves out many complicating factors; the announcement states it more 
precisely. 

RSA-210 
RSA-210 has 210 decimal digits (696 bits) and was factored in 
September 2013 by Ryan Propper: 

RSA-210 = 
2452466449002782119765176635730880184670267876783327597
4341445171506160083003858721695220839933207154910362682
7191679864079776723243005600592035631246561218465817904
100131859299619933817012149335034875870551067 

RSA-210 =  
4359585683259407917999519653872144063854709102652201963
18705482144524085345275999740244625255428455944579  
× 
5625457617268841037562770073044474817438769440075105451
04946851094548396577479473472146228550799322939273 

RSA-704 
RSA-704 has 704 bits (212 decimal digits), and was factored by Shi Bai, 
Emmanuel Thomé and Paul Zimmermann. The factorization was 
announced July 2, 2012. A cash prize of US$30,000 was previously 
offered for a successful factorization. 

RSA-704 = 
7403756347956171282804679609742957314259318888923128908
4936232638972765034028266276891996419625117843995894330
5021275853701189680982867331732731089309005525051168770
63299072396380786710086096962537934650563796359 

RSA-704 =  
9091213529597818878440658302600437485892608310328358720
428512168960411528640933367824950788367956756806141 
×  
8143859259110045265727809126284429335877899002167627883
200914172429324360133004116702003240828777970252499 

RSA-220 
RSA-220 has 220 decimal digits (729 bits), and has not been factored 
so far. 

RSA-220 = 
2260138526203405784941654048610197513508038915719776718
3211977681094456418179666766085931213065825772506315628
8667697044807000181114971186300211248792819948748206607
0131066586646083327982803560379205391980139946496955261 

RSA-230 
RSA-230 has 230 decimal digits (762 bits), and has not been factored 
so far. 

RSA-230 = 
1796949159794106673291612844957324615636756180801260007
0888918835531726460341490933493372247868650755230855864
1999292218144366847228740520652579374956943483892631711
5252252565441098081917061174250970244071801036483163828
518852689 

RSA-232 
RSA-232 has 232 decimal digits (768 bits), and has not been factored 
so far. 

RSA-232 = 
1009881397871923546909564894309468582818233821955573955
1411205162058310213385285453743661097571543636649133800
8491706516992170152473329438927028023438096090980497644
0540711201965410747553824948672771374075011577182305398
340606162079 

RSA-768 
RSA-768 has 232 decimal digits (768 bits), and was factored on 
December 12, 2009 by Thorsten Kleinjung, Kazumaro Aoki, Jens 
Franke, et.al. 

RSA-768 = 
1230186684530117755130494958384962720772853569595334792
1973224521517264005072636575187452021997864693899564749
4277406384592519255732630345373154826850791702612214291
3461670429214311602221240479274737794080665351419597459
856902143413 
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RSA-768 = 
3347807169895689878604416984821269081770479498371376856
8912431388982883793878002287614711652531743087737814467
999489 
 × 
3674604366679959042824463379962795263227915816434308764
2676032283815739666511279233373417143396810270092798736
308917 

RSA-240 
RSA-240 has 240 decimal digits (795 bits), and has not been factored 
so far. 

RSA-240 = 
1246203667817187840658350446081065904348203746516788057
5481878888328966680118821085503603957027250874750986476
8438458621054865537970253930571891217684318286362846948
4053016144164304680668756994152469931857041830305125495
94371372159029236099 

RSA-250 
RSA-250 has 250 decimal digits (829 bits), and has not been factored 
so far. 

RSA-250 = 
2140324650240744961264423072839333563008614715144755017
7977549208814180234471401366433455190958046796109928518
7247091458768739626192155736304745477052080511905649310
6687691590019759405693457452230589325976697471681738069
364894699871578494975937497937 

RSA-260 
RSA-260 has 260 decimal digits (862 bits), and has not been factored 
so far. 

RSA-260 = 
2211282552952966643528108525502623092761208950247001539
4413748319128822941402001986512729726569746599085900330
0314000511707422045608592763579537571859542988389587092
2923849100670303412462054578456641366454068421436129301
7694020846391065875914794251435144458199 

RSA-270 
RSA-270 has 270 decimal digits (895 bits), and has not been factored 
so far. 

RSA-270 = 
2331085303444075445276376569106805241456198124803054490
4294861196849591824513578286788836931857711641821391926
8572658314913060672626911354027609793166341626693946596
1964277442738866018768963134687040590667469031239107482
77606548649151920812699309766587514735456594993207 

RSA-896 
RSA-896 has 896 bits (270 decimal digits), and has not been factored 
so far. A cash prize of $75,000 was previously offered for a successful 
factorization. 

RSA-896 = 
4120234369866595438555313653325759481798116998443279828
4545562643387644556524842619809887042316184187926142024
7188869492560931776375033421130982397485150944909106910

2698610318627041148808669705649029036536588674337317208
13104105190864254793282601391257624033946373269391 

RSA-280 
RSA-280 has 280 decimal digits (928 bits), and has not been factored 
so far. 

RSA-280 = 
1790707753365795418841729699379193276395981524363782327
8737185896396559660585783742549640396449103593468573113
5994870898427857845006987168534467865255365503525160280
6563637363071753327728754995053415389279785107516999221
9717815977247331842795344772395667891735323663572705831
06789 

RSA-290 
RSA-290 has 290 decimal digits (962 bits), and has not been factored 
so far. 

RSA-290 = 
3050235186294003157769199519894966400298217959748768348
6715266186733160876943419156362946151249328917515864630
2243711712217169938447815343833256032181632549201100649
9080739328588971852438360025119965057659707690294743222
1039432760575157628357292075495937664206199565578681309
135044121854119 

RSA-300 
RSA-300 has 300 decimal digits (995 bits), and has not been factored 
so far. 

RSA-300 = 
2769315567803442139028689061647233092237608363983953254
0050367228093758247149473946190060218756255124317186573
1050750745462388288171212746300721613469564396741836389
9790869043044724760018390159830334519091746634646638678
2912566445989557515717881690022879271126747195835757441
6714366499722090015674047 

RSA-309 
RSA-309 has 309 decimal digits (1,024 bits), and has not been factored 
so far. 

RSA-309 = 
1332943998825757583801437794588036586217112243226684602
8545882619172762766705425540467426933349195015527349334
3140718228407463573528003686665212740575911870128339157
4990723511796667396585034299310219851607141131467202773
6500662369272180791635591427551906533479140029672585378
8916042959771420436564784273910949 

RSA-1024 
RSA-1024 has 1,024 bits (309 decimal digits), and has not been 
factored so far. US$100,000 was previously offered for factorization. 

Successful factorization of RSA-1024 has important security 
implications for many users of the RSA public-key authentication 
algorithm, as the most common key length currently in use is 1024 bits. 

RSA-1024 =  
1350664108659952233496032162788059699388814756056670275
2448514385152651060485953383394028715057190944179820728
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2164471551373680419703964191743046496589274256239341020
8643832021103729587257623585096431105640735015081875106
7659462920556368552947521350085287941637732853390610975
0544334999811150056977236890927563 

RSA-310 
RSA-310 has 310 decimal digits (1,028 bits), and has not been factored 
so far. 

RSA-310 = 
1848210397825850670380148517702559371400899745254512521
9257074455803347106014125276757082979328578439013881047
6689842943312641913946269652458346498372465163148188847
3364151368736236317783587518465017087145416734026424615
6906116201163809824841208576884836765760948659301883671
41388795454378671343386258291687641 

FROM THIS POINT NUMBERS ARE UNFORMATTED 

RSA-320 
RSA-320 has 320 decimal digits (1,061 bits), and has not been factored 
so far. 

RSA-320 =  
2136810696410071796012087414500377295863767938372793352
315068620363196552357 

8837094085435000951700943373838321997220564166302488321
590128061531285010636 

8571638978998117122840139210685346167726847173232244364
004850978371121744321 

8270343654835754061017503137136489303437996367224915212
044704472299799616089 

2591129924218437 

RSA-330 
RSA-330 has 330 decimal digits (1,094 bits), and has not been factored 
so far. 

RSA-330 =  
1218708633106058693138173980143325249157710686226055220
408666600017481383238 

1352456802425903555880722805261111079089882303717632638
856140900933377863089 

0634828167900405006112727432172179976427017137792606951
424995281839383708354 

6364684839261149319768449396541020909665209789862312609
604983709923779304217 

01862444655244698696759267 

RSA-340 
RSA-340 has 340 decimal digits (1,128 bits), and has not been factored 
so far. 

RSA-340 = 

2690987062294695111996484658008361875931308730357496490
239672429933215694995 

2758588771223263308836649715112756731997946779608413232
406934433532048898585 

9176676580752231563884394807622076177586625973975236127
522811136600110415063 

0004691128152106812042872285697735145105026966830649540
003659922618399694276 

990464815739966698956947129133275233 

RSA-350 
RSA-350 has 350 decimal digits (1,161 bits), and has not been factored 
so far. 

RSA-350 =  
2650719995173539473449812097373681101529786464211583162
467454548229344585504 

3495841191504413349124560193160478146528433707807716865
391982823061751419151 

6068496555750496764686447379170711424873128631468168019
548127029171231892127 

2886825928263239383444398948209649800021987837742009498
347263667908976501360 

3382322972552204068806061829535529820731640151 

RSA-360 
RSA-360 has 360 decimal digits (1,194 bits), and has not been factored 
so far. 

RSA-360 =  
2186820202343172631466406372285792654649158564828384065
217121866374227745448 

7764963889680817334211643637752157994969516984539482486
678141304751672197524 

0052350576247238785129338002757406892629970748212734663
781952170745916609168 

9358372359962787832802257421757011302526265184263565623
426823456522539874717 

6159101911392672562309560656645791824061476701380659064
9 

RSA-370 
RSA-370 has 370 decimal digits (1,227 bits), and has not been factored 
so far. 

RSA-370 =  
1888287707234383972842703127997127272470910519387718062
380985523004987076701 

7212819937261952549039800018961122586712624661442288502
745681454363170484690 
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7379449525034797494321694352146271320296579623726631094
822493455672541491544 

2700993152879235272779266578292207161032746297546080025
793864030543617862620 

8788022443052862927724673556030442659859059706227306826
58082529621 

RSA-380 
RSA-380 has 380 decimal digits (1,261 bits), and has not been factored 
so far. 

RSA-380 =  
3013500443120211600356586024101276992492167997795839203
528363236610578565791 

8270750937407901898070219843622821090980641477056850056
514799336625349678549 

2187941807116344787358312651772858878058620717489800725
333606564197363165358 

2237779263423501952646847579678711825720733732734169866
406145425286581665755 

6977260763553328252421574633011335112031733393397168350
585519524478541747311 

RSA-390 
RSA-390 has 390 decimal digits (1,294 bits), and has not been factored 
so far. 

RSA-390 =  
2680401941182388454501037079346656065366941749082852678
729822424397709178250 

4623002472848967604282562331676313645413672467684996118
812899734451228212989 

1630084759485063423604911639099585186833094019957687550
377834977803400653628 

6955344904367437281870253414058414063152368812498486005
056223028285341898040 

0795447435865033046248751475297412398697088084321037176
392288312785544402209 

1083492089 

RSA-400 
RSA-400 has 400 decimal digits (1,327 bits), and has not been factored 
so far. 

RSA-400 =  
2014096878945207511726700485783442547915321782072704356
103039129009966793396 

1419850865094551022604032086955587930913903404388675137
661234189428453016032 

6191193056768564862615321256630010268346471747836597131
398943140685464051631 

7519403149294308737302321684840956395183222117468443578
509847947119995373645 

3607109795994713287610750434646825511120586422993705980
787028106033008907158 

74500584758146849481 

RSA-410 
RSA-410 has 410 decimal digits (1,360 bits), and has not been factored 
so far. 

RSA-410 =  
1965360147993876141423945274178745707926269294439880746
827971120992517421770 

1079138139324539033381077755540830342989643633394137538
983355218902490897764 

4412968474332754608531823550599154905901691559098706892
516477785203855688127 

0635069372091564594333528156501293924133186705141485137
856845741766150159437 

6063244163040088180887087028771717321932252992567756075
264441680858665410918 

431223215368025334985424358839 

RSA-420 
RSA-420 has 420 decimal digits (1,393 bits), and has not been factored 
so far. 

RSA-420 =  
2091366302476510731652556423163330737009653626605245054
798522959941292730258 

1898373570076188752609749648953525484925466394800509169
219344906273145413634 

2427186266197097846022969248579454916155633686388106962
365337549155747268356 

4666583846809964354191550136023170105917441056517493690
125545320242581503730 

3405952887826925813912683942756431114820292313193705352
716165790132673270514 

3817744164107601735413785886836578207979 

RSA-430 
RSA-430 has 430 decimal digits (1,427 bits), and has not been factored 
so far. 

RSA-430 =  
3534635645620271361541209209607897224734887106182307093
292005188843884213420 
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6950355315163258889704268733101305820000124678051064321
160104990089741386777 

2424190744453885127173046498565488221441242210687945185
565975582458031351338 

2070785777831859308900851761495284515874808406228585310
317964648830289141496 

3289966226854692560410075067278840383808716608668377947
047236323168904650235 

70092246473915442026549955865931709542468648109541 

RSA-440 
RSA-440 has 440 decimal digits (1,460 bits), and has not been factored 
so far. 

RSA-440 =  
2601428211955602590070788487371320550539810804595235289
42350858966 

3391270837431025267480059242674631900797889006533757316
05419428681 

1406564385332722948450299423322261711239266063575232577
36893667452 

3411922479051683878936845248180307729497304959710847337
97380514567 

3263119916483529703607405432752966630781223459776639075
04414453144 

0817180207090407273927593041029935900605961930559070193
96277252961 
16299946059898442103959412221518213407370491 

RSA-450 
RSA-450 has 450 decimal digits (1,493 bits), and has not been factored 
so far. 

RSA-450 =  
1984634237142836623497230721861131427789462869258862089
878538009871598692569 

0078791591684242367262529704652673686711493985446003494
265587358393155378115 

8032447061155145160770580926824366573211993981662614635
734812647448360573856 

3132247491715526997278115514905618953253443957435881503
593414842367096046182 

7643434794849824315251510662855699269624207451365738384
255497823390996283918 

3287667419172988072221996532403300258906083211160744508
191024837057033 

RSA-460 
RSA-460 has 460 decimal digits (1,526 bits), and has not been factored 
so far. 

RSA-460 =  
1786856020404004433262103789212844585886400086993882955
081051578507634807524 

1464078819812169681394445771476334608488687746254318292
828603396149562623036 

3564554675355258128655971003201417831521222464468666642
766044146641933788836 

8932452217321354860484353296131403821175862890998598653
858373835628654351880 

4806362231643082386848731052350115776715521149453708868
428108303016983133390 

0416365515466857004900847501644808076825638918266848964
153626486460448430073 

4909 

RSA-1536 
RSA-1536 has 463 decimal digits (1,536 bits), and has not been 
factored so far. $150,000 was previously offered for successful 
factorization. 

RSA-1536 =  
1847699703211741474306835620200164403018549338663410171
4717857749106516967 

1116124985933768430543574458561606154457179405222971773
2524660960646946071 

2496237204420222697567566873784275623895087646784409332
8515749657884341508 

8475528298186726451339863364931908084671990431874381283
3635027954702826532 

9780293491615581188104984490831954500984839377522725705
2578591944993870073 

6957556884369338127796130892303925696952532616208236764
9031603655137144791 

3932347169566988069 

RSA-470 
RSA-470 has 470 decimal digits (1,559 bits), and has not been factored 
so far. 

RSA-470 =  
1705147378468118520908159923888702802518325585214915968
358891836980967539803 

6897711442383602526314519192366612270595815510311970886
116763177669964411814 

0957486602388713064698304619191359016382379244440741228
665455229545368837485 

5874455212895044521809620818878887632439504936237680657
994105330538621759598 
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4047709603954312447692725276887594590658792939924609261
264788572032212334726 

8553025718835659126454325220771380103576695555550710440
908570895393205649635 

76770285413369 

RSA-480 
RSA-480 has 480 decimal digits (1,593 bits), and has not been factored 
so far. 

RSA-480 =  
3026570752950908697397302503155918035891122835769398583
955296326343059761445 

7144169659817040125185215913853345598217234371231338324
773210726853524776378 

4105186549246199888070331088462855743520880671299302895
546822695492968577380 

7067958428022008294111984222973260208233693152589211629
901686973933487362360 

8129660418514569063995282978176790149760521395548532814
196534676974259747930 

6858645849268328985687423881853632604706175564461719396
117318298679820785491 

875674946700413680932103 

RSA-490 
RSA-490 has 490 decimal digits (1,626 bits), and has not been factored 
so far. 

RSA-490 =  
1860239127076846517198369354026076875269515930592839150
201028353837031025971 

3738522164743327949206433999068225531855072554606782138
800841162866037393324 

6578171804201717222449954030315293547871401362961501065
002486552688663415745 

9758925793594165651020789220067311416926076949777767604
906107061937873540601 

5942747316176193775374190713071154900658503269465516496
828568654377183190586 

9537640698044932638893492457914750855858980849190488385
315076922453755527481 

1376719096144119390052199027715691 

RSA-500 
RSA-500 has 500 decimal digits (1,659 bits) and has not been factored 
so far. 

RSA-500 = 

1897194133748626656330534743317202527237183591953428303
184581123062450458870 

7687605943212347625766427494554764419515427586743205659
317254669946604982419 

7301601038125215285400688031516401611623963128370629793
265939405081077581694 

4786041721411024641038040278701109808664214800025560454
687625137745393418221 

5494821277335671735153472656328448001134940926442438440
198910908603252678814 

7850601132077287172819942445113232019492229554237898606
631074891074722425617 

39680319169243814676235712934292299974411361 

RSA-617 
RSA-617 has 617 decimal digits (2,048 bits) and has not been factored 
so far. 

RSA-617 =  
2270180129378501419358040512020458674106123596276658390
709402187921517148311 

9139894870133091111044901683400949483846818299518041763
507948922590774925466 

0881718792594659210265970467004498198990968620394600177
430944738110569912941 

2854289188085536270740767072259373777266697344097736124
333639730805176309150 

6836310795312607239520365290032105848839507981452307299
417185715796297454995 

0235053160409198591937180233074148804462179228008317660
409386563445710347785 

5345712108053073639453592393265186603051504106096643731
332367283153932350006 

7937107541955437362433248361242525945868802353916766181
532375855504886901432 

221349733 

RSA-2048 
RSA-2048 has 617 decimal digits (2,048 bits). It is the largest of the 
RSA numbers and carried the largest cash prize for its factorization, 
US$200,000. The largest factored RSA number is 768 bits long (232 
decimal digits). All RSA cash prizes were removed from circulation as 
soon as the McCanney Generator Function was released in March 
2007.  

RSA-2048 =  
2519590847565789349402718324004839857142928212620403202
777713783604366202070 
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7595556264018525880784406918290641249515082189298559149
176184502808489120072 

8449926873928072877767359714183472702618963750149718246
911650776133798590957 

0009733045974880842840179742910064245869181719511874612
151517265463228221686 

9987549182422433637259085141865462043576798423387184774
447920739934236584823 

8242811981638150106748104516603773060562016196762561338
441436038339044149526 

3443219011465754445417842402092461651572335077870774981
712577246796292638635 

6373289912154831438167899885040445364023527381951378636
564391212010397122822 

120720357 
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