Program to calculate the 15 first mersenne's primes numbers and further perharps

David Strainchamps

Strainchamps D. Program to calculate the 15 first mersenne's primes numbers and further perharps. J Pure Appl Math. 2024; 8(3):01-02.

ABSTRACT

This article present an algorythm to calculate the 15 first

Mersenne's Primes Numbers with the knwoledge of the 2 first 3 and 5 .

Key words: Mersenne; Primes; Algorithm

INTRODUCTION

工irst I see second degree polynomial structure and second I see: if you know the coeffecient a of the second degree polynom you can calculate the future prime's Mersenne (Figures 1 and 2).

Figure 1) Polynomial structure

Figure 2) Second polynomial structure
Second I see: If you know the coeffecient a of the second degree polynom you can calculate the future prime's Mersenne

Independent Researcher, Singapore

Correspondence: David Strainchamps, Independent Researcher, Singapore, e-mail: david.strainchamps@gmail.com
Received: 2 April, 2024, Manuscript No. puljpam-24-7044, Editor Assigned: 6 April, 2024, PreQC No. puljpam-24-7044(PQ), Reviewed: 25 April, 2024, QC No. puljpam-24-7044(Q), Revised: 30 April,2024, Manuscript No. puljpam-24-7044(R), Published: 31 May, 2024, DOI:-10.37532/2752. 8081.24.8(3).01-02

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

Theorem 1: If $\mathrm{a}=2$ * $[0,2,-1,-1,5,9,-1,-5,1,187,-154,293,126$, $423,429,50,-433,2548,-2507,510,3726,-3480,-128,9890,10229$, $-8740,-1357,31248,228353,-219077,147880,-128936,718735,-$ 766398, 1953030, 1271554, 517385, -2244261, -556102, 1254569, 1128653, 1196905, 456562, -2509163, 7151872, 774784, -6648242, 1165690] then $\mathrm{m}[\mathrm{i}+2]=\mathrm{a}+2 * \mathrm{~m}[\mathrm{i}+1]-\mathrm{m}[\mathrm{i}]$ with $\mathrm{M}[1]=3$ and $\mathrm{M}[2]$ $=5$

Proof. Proofed with an algorithm and the verification that all 51 known Mersenne's Primes are found.

```
Algorithm to find the 15 first Mersenne's primes numbers
    import gmpy2
    from gmpy2 import mpz
nb_set=15 #number of merssenne to calculate
m}=[0] * 5
m[1] = 3
m[2] = 5
a = 0
i = 1
m3 = a + 2 *m[i + 1] - m[i]
m[i + 2] = m3
for i in range(2,nb_set):
    a=1
    k=1
    m3 = a + 2 *m[i + 1] - m[i]
```


if $\mathrm{k} \% 2=1$:
$\mathrm{a}=-\mathrm{a}$
else:
$\mathrm{a}=-\mathrm{a}+1$
$\mathrm{k}+=1$
$m 3=a+2 * m[i+1]-m[i]$
$m[i+2]=m 3$
$\operatorname{print}\left(\left[\operatorname{int}(x)\right.\right.$ for x in $m\left[1: n b _\right.$set +2$\left.]\right]$)
the script is here
CONCLUSION

This algorithm allow to find the 15 first Mersenne's primes but is limited by the condition gmpy2.is_prime(mpz('2')** abs(m3)-1)
It will be for further research interesting to replace this condition by a Lucas Lehmer test.

