44 2033180199
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Journal of Veterinary Research and Medicine

Sign up for email alert when new content gets added: Sign up

Prevalence of Toxocara canis in Stray Dogs of Kashmir Valley

Author(s): Zubair Ahmad Dar, Syed Tanveer, GN Yattoo, Bashir Ahmad Sofi, Perviz Ahmad Dar, and Showkat Ahmad Wani

 Prevalence of Toxocara canis in Stray Dogs of Kashmir Valley

Zubair Ahmad Dar*, Syed Tanveer, 1GN Yattoo, 2Bashir Ahmad Sofi, Perviz Ahmad Dar, and Showkat Ahmad Wani

P.G. Deptt. Of Zoology, University of Kashmir, Srinigar – 190006, J & K, India.

1Deptt. of Gastroenterology and

2Deptt. of Microbiology, (SKIMS), Soura, 190006, India.

 

 Abstract

 

Toxocara canis which is a common nematode parasite of dogs is cosmopolitan in distribution and is one of the most important canine parasites because of its widespread distribution, parental and neonatal transmission to pups and public health importance. The prevalence of Toxocara canis infection in stray dogs was determined by examining faecal deposits from the pavement of different districts of Kashmir Valley. Out of 968 faecal samples, 188 faecal samples collected from different areas like playgrounds, streets, parks, open fields etc of Kashmir valley were found harbourig Toxocara canis eggs. The presence of the source of infection in vicinity like play grounds, house yards, in schools or in open fields poses a great threat and an easy target of human toxocariasis. Public health risk of Toxocara canis in human toxocariasis is discussed.

Keywords

Fruit fly population density, Bactrocera, Citrus Fruit, Pest incidence, Fruit losses, Fly monitoring

Introduction

Citrus is a most common genus of flowering plants in the family Rutaceae of Order Sapindales in Plantae Kingdom. Citrus consists of different edible fruit species including the best-known examples are the oranges, lemons, grapefruit and limes. The differences between the various species of citrus are mainly due to their flavor, shape and size of the fruit. The flavors are primarily controlled by the balance between sour (acid) and sweet (sugar) factors. There is considerable evidence that citrus foods may help to reduce the risk or retard the progression of several serious diseases and disorders. Citrus is most commonly thought as a good source of vitamin C (ascorbic acid). Vitamin C, which is an essential water-soluble vitamin, plays a key role in the formation of collagen that is a primary component of much of the connective tissue in the body. Adequate collagen synthesis is essential for strong ligaments, tendons, dentin, skin, blood vessels and bones, and for wound healing and tissue repair. The weakening of these tissues is a symptom of vitamin C deficiency. Vitamin C is an important aid in the absorption of inorganic iron; and it has also been shown to aid in the treatment of anemia and stress [1;2]. Characterized by the distinct aroma and delicious taste, citrus fruits have been recognized as an important food and integrated part of our daily diet, playing key roles in supplying energy and nutrients and in health promotion. With low protein and very little fat content, citrus fruits supply mainly carbohydrates, such as sucrose, glucose and fructose. Fresh citrus fruits are also a good source of dietary fiber, which is associated with gastrointestinal disease prevention and lowered circulating cholesterol [3]. Citrus fruits are nutrient-dense foods that can be good sources of carbohydrates, including dietary fiber, and many vitamins and minerals. For example, a medium orange contains 60 to 80 kcal; a grapefruit 90 kcal and a tablespoon (15 ml) of lemon juice only 4 kcal. The orange is a juicy fruit of the citrus genus, abundant all over the world and its nutrients are plentiful and diverse. Many papers have been published concerning nutritional requirements furnished by citrus and information is available showing a 225 ml glass of orange juice provides 75 mg of folic acid, and contains approximately 125 mg of vitamin C and 500 mg of potassium. One medium orange can provide approximately 235 mg of potassium and contains about 3.0 g of non-starch polysaccharides, and citrus fruit can make a valuable contribution to meet the daily fiber goal [4]. Furthermore, the peel oils of limes, lemons, mandarins, oranges, and grape fruits, exhibit toxic insecticidal properties, and are known for their antibacterial properties [5]. Most fruit flies are facultative breeders that can lay eggs whenever their host fruits are available and so may have many generations per year depending on host fruit availability. Their damage starts when the female fruit flies puncture the fruit with their long and sharp ovipositor. The fruit skin is breached, and bacteria enter and the fruit starts to decay. The larvae that hatch from the eggs feed on the decaying fruit tissue, and on the yeasts and bacteria that multiply in it. It is believed that some fruit fly females or may be all carry bacteria with them that they inject into the fruit at oviposition so that the fruit decays faster making it more nutritious for the larvae. Fruits with fruit fly larvae in them decay quickly and sometimes it is possible to cut out the damage for home consumption of the remaining part of the fruit, but infested fruits are generally un-saleable, and can certainly not be exported. Crop losses can vary from a few per cent up to 100%, and losses of 90% or over are common in the orchard [6]. Most citrus varieties can be attacked by fruit fly but some varieties are more attractive than others. Citrus may not the most favorable host for fruit fly because of its thick skin and rind oil, which can kill eggs and larvae. Citrus fruits are normally stung when they are silver green, just changing color to fully colored. Fruit damage can be high in situations when there are no other suitable hosts and there are high numbers of flies or fruits have thin skins or are already damaged (splitting, hail damage). In addition to the direct damage, fly can cause to fruit, an infestation that can has serious implications for movement of fruit beyond and within states, especially for export. Fruit infested with fly larvae usually falls from the tree. Damage by larvae tunneling in the fruit varies with the type and maturity of the fruit, the number of larvae in it, and the weather. Frequently citrus fruits, although stung, do not develop larvae, but the stung fruit sometimes fall and larvae can successfully develop in most citrus varieties [7]. Mature attacked fruits may develop a water soaked appearance and young fruits become distorted and usually drop [8].

The productivity of citrus orchards is still below the desired level because this sector is exposed to several constraints such as the of pest problems and among these, the fruit flies are the most important pest. Therefore, the renewed attempts are needed to elaborate an Integrated Pest Management (IPM) strategy in the country for citrus orchards. The objectives of this study were to quantify the population density and fruit infestation intensity of fruit flies entering in citrus orchard for timely apcplication of protective measure to prevent establishment and spread of adult flies. The use of current and comprehensive information on the pests and their incidence, in combination with available pest control methods by the most economical means, can be exercised to manage pest damage with the least possible hazard to people, property and the environment.

Materials and Methods

Trials were laid in citrus fields located in the north of Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad. The experimental tests in fields were performed from January to December 2011-12 and study was conducted in orchards grown with Citrus reticulata Blanco var. mandarin. The population density of Bactrocera pests was calculated per week in each trap at a year round. Fly arthropods captured were identified to assess the selectivity degree of traps and attractants. Pest’s infestation was calculated through randomly selected trees and fruits in each orchard per week at a year round.

Inspection of fruit fly populations

For pest monitoring for presence of fruit flies, Para-pheromone traps were used to observe fly populations in citrus orchards to increase attractiveness. The trapping systems were consisted of the trap and a lure (methyl eugenol) which contained a mixture of the Para-pheromone or male attractant and an insecticide. The insecticide purchased from the local agricultural supplier and used in traps included Chlorpyrifos. The lure in the traps attracted only the male fruit fly, which were then killed by the insecticide and these chemicals were effective for about 3 months then traps charged again with these chemicals. A minimum of three traps were used with an average of one trap per acre in a block. Traps were installed in trees at eye-level parts of the trees and properly placed out of reaching direct sunlight in the east or north east side of the tree. Traps were inspected daily until the first fly was caught, and then examined at weekly intervals for detecting fruit flies pests.

Observation of fruit fly infestations

The orchards were selected randomly and observations recorded on 100 fruits randomly from samples taken directly from the tree or from the fresh fallen fruits on the ground for weekly counting of the fruit fly damage. From each selected orchard, randomly 5 trees were selected, and on each selected trees, 20 fruits were observed randomly for recording observation on pest’s infestation. For any external symptom of fruit fly infestation, fruits were separated into two categories like how many are possibly infested as indicated by the presence of puncture mark or other relevant signs, and none infested as indicated by the how many are not infested. From each sample of the possibly infested category of fruits, these were then dissected to confirm the presence of fly larvae inside. From the possibly infested record category, the numbers of fruits were confirmed to have fly larvae inside, then counted the percentage of infested fruits using formula:- number of confirmed infested fruits/ 100 samples x 100%.

Analysis of data

Fruit flies pest monitoring by each trap and observation recording on pest’s infestation were pooled for each standard week all over the study period, using the Statistix 8.1 software. The average data variables calculated were subjected to ANOVA and compared according to LSD test at P≤ 5.0 level. Data are presented in table as means with standard errors and Least Significant Difference (LSD) test values.

Results and Discussion

The citrus orchards showed numerous diversities of pest population and incidence having considerable values among the basic sector of horticulture economy. The peach fruit fly, B. zonata, was one of the most devastating pests of citrus fruits and considered as the most invasive of all members of the Tephritidae at study site.

 


PDF
 
Google Scholar citation report
Citations :

Journal of Veterinary Research and Medicine received citations as per Google Scholar report

pulsus-health-tech
Top