44 2033180199
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Journal of Pure and Applied Mathematics

Sign up for email alert when new content gets added: Sign up

The generating function technique and algebraic ordinary differential equations

Author(s): Robert Lloyd Jackson*

In the past, theorems have shown that individuals can implement a (formal) power series method to derive solutions to Algebraic Ordinary Differential Equations, or AODEs. First, this paper will give a quick synopsis of these “bottom-up” approaches while further elaborating on a recent theorem that established the (modified) Generating Function Technique, or mGFT, as a powerful method for solving differentials equations. Instead of building a (formal) power series, the latter method uses a predefined set of (truncated) Laurent series comprised of polynomial linear, exponential, hypergeometric, or hybrid rings to produce an analytic solution. Next, this study will utilize the mGFT to create analytic solutions to a several example AODEs.Ultimately, one will find mGFT may serve as a powerful "top-down" method for solving linear and nonlinear AODEs.


Full-Text | PDF
 
Google Scholar citation report
Citations : 83

Journal of Pure and Applied Mathematics received 83 citations as per Google Scholar report

Journal of Pure and Applied Mathematics peer review process verified at publons
pulsus-health-tech
Top